Open Access
Issue
Mécanique & Industries
Volume 11, Number 2, Mars-Avril 2010
Page(s) 105 - 116
DOI https://doi.org/10.1051/meca/2010022
Published online 15 September 2010
  1. G. Shi, S.N. Atluri, Static and dynamic analysis of space frames with non-linear flexible connections, Int. J. Num. Meth. Eng. 28 (1989) 2635–2650 [CrossRef] [Google Scholar]
  2. P.D. Moncarz, K.H. Gerstle, Steel frames with non-linear connections, J. Struct. Div. ASCE 107 (1981) 1427–1441 [Google Scholar]
  3. A. Mohebkhaha, A.A. Tasnimia, H.A. Moghadamb, Nonlinear analysis of masonry-infilled steel frames with openings using discrete element method, J. Constr. Steel Res. 64 (2008) 1463–1472 [CrossRef] [Google Scholar]
  4. N.M.M. Maia, J.M.M. Silva, Theoretical and Experimental Modal Analysis, Research Study Press LTD, Taunton, England, 1997 [Google Scholar]
  5. J.K. Hammond, P.R. White, The analysis of non-stationary signals using time-frequency methods, J. Sound Vib. 190 (1996) 419–447 [CrossRef] [Google Scholar]
  6. S. Mallat, G. Papanicolaou, Z. Zhang, Adaptive covariance estimation of locally stationary processes, Ann. Stat. 28 (1998) 1–47 [Google Scholar]
  7. R. Ceravolo, Time-frequency analysis, in Encyclopedia of Structural Health Monitoring, C. Boller, F.-K. Chang & Y. Fujino (eds.), Wiley & Sons, 2008 [Google Scholar]
  8. P. Bonato, R. Ceravolo, A. D. Stefano, F. Molinari, Use of cross time-frequency estimators for the structural identification in non-stationary conditions and under unknown excitation, J. Sound Vib. 237 (2000) 775–791 [CrossRef] [Google Scholar]
  9. R. Ceravolo, Use of instantaneous estimators for the evaluation of structural damping, J. Sound Vib. 274 (2004) 385–401 [CrossRef] [Google Scholar]
  10. S. Erlicher, P. Argoul, Modal identification of linear non-proportionally damped systems by wavelet transform, Mech. Sys. Sig. Proc. 21 (2007) 1386–1421 [CrossRef] [Google Scholar]
  11. W.B. Collis, P.R. White, J.K. Hammond, Higher-order spectra: the bispectrum and trispectrum, Mechanical Systems and Signal Processing 12 (1998) 375–394 [CrossRef] [Google Scholar]
  12. S.B. Kim, E.J. Powers, Estimation of Volterra kernels via higher-order statistical signal processing, Chapter 7 in Higher-Order Statistical Signal Processing B. Boashash, E.J. Powers, A. Zoubir (eds.), Longman/Wiley, Melbourne and New York, 1995 [Google Scholar]
  13. G.V. Demarie, R. Ceravolo, A. D. Stefano, Instantaneous identification of polynomial non-linearity based on Volterra series representation, Key Engineering Materials 293–294 (2005) 703–710 [CrossRef] [Google Scholar]
  14. K. Worden, G. Manson, G.R. Tomlinson, A harmonic probing algorithm for the multi-input Volterra series, J. Sound Vib. 201 (1997) 67–84 [CrossRef] [MathSciNet] [Google Scholar]
  15. K. Worden, G. Manson, G.R. Tomlinson, Random vibration of a multi-degree-of-freedom non-linear system using the Volterra series, J. Sound Vib. 226 (1999) 397–405 [CrossRef] [Google Scholar]
  16. F. Thouverez, L. Jezequel, Identification of a localized non-linearity, Int. J. Non-Lin. Mech. 33 (1998) 935–945 [CrossRef] [Google Scholar]
  17. I. Tawfiq, T. Vinh, Contribution to extension of modal analysis to non-linear structure using Volterra series, Mechanical Systems and Signal Processing 17 (2003) 379–407 [CrossRef] [Google Scholar]
  18. A. Chatterjee, N.S. Vyas, Non-linear parameter estimation in multi-degree-of-freedom systems using multi-input Volterra series, Mechanical Systems and Signal Processing 18 (2004) 457–489 [CrossRef] [Google Scholar]
  19. M. Schetzen, The Volterra/Wiener theories of non-linear systems, Krieger publishing company, Malabar, FL, 1980 [Google Scholar]
  20. W.J. Rugh, Nonlinear system theory. The Volterra/Wiener approach, 2002 (Web version:) [Google Scholar]
  21. J.A. Vazquez Feijoo, K. Worden, R. Stanway, Associated linear equations for Volterra operators, Mechanical Systems and Signal Processing 19 (2005) 57–69 [CrossRef] [Google Scholar]
  22. J.R. Carson, Notes on the theory of modulation, Proc. IEEE 10 (1922) 57–64 [Google Scholar]
  23. W.K. Cloud, D.E. Hudson, Strong motion data from San Fernando, California earthquake of February 9, 1971, California Division of Mines and Geology Bull. 196 (1975) 273–303 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.