Open Access

This article has an erratum: [https://doi.org/10.1051/meca/2011008]


Issue
Mécanique & Industries
Volume 11, Number 2, Mars-Avril 2010
Page(s) 133 - 147
DOI https://doi.org/10.1051/meca/2010025
Published online 15 September 2010
  1. L.S. Jacobsen, Impulsive hydrodynamics of fluid inside a cylindrical tank and of fluid surrounding a cylindrical pier, Bull. Seismological Soc. Amer. 39 (3) (1949) 189–204 [Google Scholar]
  2. G.W. Housner, Earthquake pressures on fluid containers. 8th Technical Report under Office of Naval Research, California Institute of Technology, Pasadena, California, August, 1954 [Google Scholar]
  3. G.W. Housner, Dynamic pressures on accelerated fluid containers. Bull. Seismological Soc. Amer. 47 (1) (1957) 15–35 [Google Scholar]
  4. G.W. Housner, The dynamic behavior of water tanks. Bull. Seismological Soc. Amer. 53 (2) (1963) 381–387 [Google Scholar]
  5. A.S. Veletsos, J.Y. Yang, Earthquake response of liquid storage tanks. Advances in Civil Engineering Through Engineering Mechanics, Proceedings of the Engineering Mechanics Division Specialty Conferences, ASCE, Raleigh, North Carolina (1977) 1–24 [Google Scholar]
  6. O.M. Faltinsen, A numerical nonlinear method of sloshing in tanks with two-dimensional flow, J. Ship Res. 22 (1978) 193–202 [Google Scholar]
  7. F.D. Fischera, F.G. Rammerstorferb, A Refined Analysis of Sloshing Effects in Seismically Excited Tanks, Int. J. Press. Vessels Piping 76 (1999) 693–709 [CrossRef] [Google Scholar]
  8. K.S. Lay, Seismic Coupled Modeling of Axisymmetric Tanks Containing Liquid, J. Eng. Mech. 119 (1993) 1747–1761 [CrossRef] [Google Scholar]
  9. A. El-Zeiny, Nonlinear Time-Dependent Seismic Response of Unanchored Liquid Storage Tanks, Ph.D. Dissertation, Department of Civil and Environmental Engineering, University of California, Irvine, 1995 [Google Scholar]
  10. B.F. Chen, H.W. Chiang, Complete 2D and Fully Nonlinear Analysis of Ideal Fluid in Tanks, J. Eng. Mech. ASCE 125 (1999) 70–78 [CrossRef] [Google Scholar]
  11. B.F. Chen, Viscous Fluid in Tank under Coupled Surge, Heave, and Pitch Motions, Journal of Waterway, Port, Coastal, and Ocean Engineering ASCE 131 (2005) 239–256 [CrossRef] [Google Scholar]
  12. M. Souli, A. Ouahsine, L. Lewin, ALE formulation for fluid-structure interaction problems, Comput. Methods Appl. Mech. Eng. 190 (2000) 659–675 [Google Scholar]
  13. M. Souli, J.P. Zolesio, Arbitrary Lagrangian-Eulerian and free surface methods in fluids mechanics, Comput. Methods Appl. Mech. Eng. 191 (2001) 451–466 [Google Scholar]
  14. E. Longatte, Z. Benddjedou, M. Souli, Methods for numerical study of tube bundle vibrations in cross-flows, J. Fluids Struct. 18 (2003) 513–528 [CrossRef] [Google Scholar]
  15. E. Longatte, Z. Bendjeddou, M. Souli, Application of Arbitrary Lagrange Euler Formulations to Flow-Induced Vibration problems, J. Press. Vessel Technology 125 (2003) 411–417 [CrossRef] [Google Scholar]
  16. N. Aquelet, M. Souli, L. Olovson, Euler Lagrange coupling with damping effects: Application to slamming problems, Comput. Methods Appl. Mech. Eng. 195 (2005) 110–132 [Google Scholar]
  17. Y.H. Chen, W.S. Hwang, C.H. Ko, Sloshing Behaviours of Rectangular and Cylindrical Liquid Tanks Subjected to Harmonic and Seismic Excitations, Earthquake Engineering and Structural Dynamics 36 (2007) 1701–1717 [Google Scholar]
  18. D. Liu, P. Lin, A numerical study of three-dimensional liquid sloshing in tanks, J. Comput. Phys. 227 (2008) 3921–3939 [Google Scholar]
  19. S. Mitra, P.P. Upadhyay, K.P. Sinhamahapatra, Slosh Dynamics of Inviscid Fluids in Two-Dimensional Tanks of Various Geometry Using Finite Element Method, Int. J. Num. Methods Fluids 56 (2008) 1625–1651 [CrossRef] [Google Scholar]
  20. D.D. Kana, Seismic Response of Flexible Cylindrical Liquid Storage Tanks, Nuclear Engineering and Design 52 (1979) 185–199 [CrossRef] [Google Scholar]
  21. G.C. Manos, Dynamic response of a broad storage tank model under a variety of simulated earthquake motions. Proc. 3rd U.S. Nat. Conf. on Earthquake Engrg., Earthquake Engineering Research Institute, E1 Cerrito, Calif., 1986, pp. 2131–2142 [Google Scholar]
  22. Tanaka, Motoaki, Sakurai, Ishida, Tazuke, Akiyama, Kobayashi and Chiba, Proving Test of Analysis Method on Nonlinear Response of Cylindrical Storage Tank Under Severe Earthquakes, Proceedings of 12th World Conference on Earthquake Engineering (12 WCEE), Auckland, New Zealand, 2000 [Google Scholar]
  23. R.A. Ibrahim, Liquid Sloshing Dynamics: Theory and Applications, Cambridge University Press, New York, USA, 2005 [Google Scholar]
  24. T. Belytschko, W.K. Liu, B. Moran, Nonlinear finite elements for continua and structures, Wiley, New York, 2000 [Google Scholar]
  25. D.J. Benson, Computational Methods in Lagrangian and Eulerian Hydrocodes, Comput. Methods Appl. Mech. Eng. 99 (1992) 235–394 [CrossRef] [Google Scholar]
  26. T.J.R. Hughes, W.K. Liu, T.K. Zimmerman, Lagrangian Eulerian finite element formulation for viscous flows, J. Comput. Methods Appl. Mech. Eng. 29 (1981) 329–349 [Google Scholar]
  27. S. Ghosh, N. Kikuchi, An arbitrary Lagrangian-Eulerian finite element method for large deformation analysis of elastic-viscoplastic solid, Comput. Meth. Appl. Mech. Engng. 86 (1991) 127–188 [CrossRef] [Google Scholar]
  28. J. Donea, Arbitrary Lagrangian-Eulerian Finite Element Methods, Computational methods four Transient Analysis, T. Belytschko, T.J.R. Hughes (eds.) Elsevier Sciences Publishers, B.V. 1983, pp. 473–513 [Google Scholar]
  29. D.J. Benson, A mixture theory for contact in multi-material eulerian formulations, Comput. Meth. Appl. Mech. Eng. 140 (1997) 59–86 [CrossRef] [Google Scholar]
  30. D.P. Flanagan, T. Belytschko, A Uniform Strain Hexahedron, Quadrilateral Orthogonal Hourglass Control, Int. J. Numer. Meths, Eng. 17 (1981) 679–706 [Google Scholar]
  31. F. Erchiqui, M. Souli, R.B. Yedder, Nonisothermal Finite-Element Analysis of Thermoforming of Polyethylene Terephthalate Sheet: Incomplete Effect of the Forming Stage, Polymer Engineering and Science (2007) 2129–2144 [Google Scholar]
  32. C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39 (1981) 201–225 [CrossRef] [Google Scholar]
  33. F.H. Halow, J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface, Phys. Fluids 12 (1965) 2182 [Google Scholar]
  34. J.A. Viecelli, A method for including arbitrary external boundaries in the MAC incompressible fluid computing technique, J. Comput. Phys. 4 (1969) 543 [CrossRef] [Google Scholar]
  35. D.L. Young, Time-dependent multi-material flow with large fluid distortion, Numerical Methods for Fluids Dynamics, K.W. Morton, M.J. Baines (eds.), Academic Press, New-York, 1982 [Google Scholar]
  36. N. Aquelet, M. Souli, J. Gabrys, L. Olovsson, A new ALE formulation for sloshing analysis, Struct. Eng. Mech. 16 (2003) 423–440 [Google Scholar]
  37. A. Alia, M. Souli, High explosive simulation using multi-material formulations, Appl. Therm. Eng. 26 (2006) 1032–1042 [CrossRef] [Google Scholar]
  38. P.R. Woodward, P. Collela, The numerical simulation of two-dimensional fluid flow with strong shocks, Lawrence Livermore National Laboratory, UCRL-86952, 1982 [Google Scholar]
  39. B. Van Leer, Towards the Ultimate Conservative Difference Scheme. IV. A New Approach to Numerical Convection, J. Comput. Phys. 23 (1977) 276–299 [Google Scholar]
  40. D.J. Benson, Eulerian finite element methods for the micromechanics of heterogenous materials: Dynamics prioritization of material interfaces, Comput. Methods Appl. Mech. Eng. 150 (1998) 343–360 [CrossRef] [Google Scholar]
  41. A.A. Amsden, C.W. Hirt, YAQUI: An Arbitrary Lagrangian-Eulerian Computer Program for Fluid Flow at All Speeds, Los Alamos Scientific Laboratory, LA-5100, 1973 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.