Open Access
Issue
Mécanique & Industries
Volume 11, Number 3-4, Mai-Août 2010
Giens 2009
Page(s) 249 - 254
DOI https://doi.org/10.1051/meca/2010049
Published online 20 December 2010
  1. M. Ainsworth, J.T. Oden, A posteriori error estimation in finite element analysis,Pure and Applied Mathematics, Wiley-Interscience, 2000 [Google Scholar]
  2. N.E. Wiberg, P. Díez, Adaptive modeling and simulation, Comput. Methods Appl. Mech. Eng. 195 (2006) 205–480 [CrossRef] [Google Scholar]
  3. P. Ladevèze, J.-P. Pelle, Mastering calculations in linear and nonlinear mechanics, Mechanical Engineering, Springer, 2005 [Google Scholar]
  4. P. Ladevèze, Upper error bound on calculated outputs of interest for linear and nonlinear structural problems, C. R. Mécanique 334 (2006) 399–407 [Google Scholar]
  5. L. Chamoin, P. Ladevèze, Bounds on history-dependent or independent local quantities in viscoelasticity problems solved by approximate methods, Int. J. Numer. Meth. Eng. 71 (2007) 1387–1411 [CrossRef] [Google Scholar]
  6. P. Ladevèze, L. Chamoin, E. Florentin, A new non-intrusive technique for the construction of admissible stress fields in model verification, Comput. Methods Appl. Mech. Eng. 199 (2010) 766–777 [CrossRef] [Google Scholar]
  7. O.C. Zienkiewicz, J.Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Int. J. Numer. Meth. Eng. 24 (1987) 337–357 [Google Scholar]
  8. I. Babuška, W.C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978) 736–755 [CrossRef] [MathSciNet] [Google Scholar]
  9. P. Ladevèze, D. Leguillon, Error estimate procedure in the finite element method and applications, SIAM J. Numer. Anal. 20 (1983) 485–509 [CrossRef] [MathSciNet] [Google Scholar]
  10. J.Z. Zhu,A posteriori error estimation – the relationship between different procedures, Comput. Methods Appl. Mech. Eng. 150 (1997) 411–422 [CrossRef] [Google Scholar]
  11. H.-W. Choi, M. Paraschivoiu, Adaptive computations of a posteriori finite element output bounds: a comparison of the “hybrid-flux” approach and the “flux-free” approach, Comput. Methods Appl. Mech. Eng. 193 (2004) 4001–4033 [CrossRef] [Google Scholar]
  12. N. Parés, P. Díez, A. Huerta, Subdomain-based flux-free a posteriori error estimators, Comput. Methods Appl. Mech. Eng. 195 (2006) 297–323 [CrossRef] [Google Scholar]
  13. C. Carstensen, S.A. Funken, Fully reliable localized error control in the FEM, SIAM J. Sci. Comput. 21 (1999-2000) 1465–1484 [Google Scholar]
  14. L. Machiels, Y. Maday, A.T. Patera, A “flux-free” nodal Neumann subproblem approach to output bounds for partial differential equations, C.-R. Acad. Sci. Ser. I – Math. 330 (2000) 249–254 [Google Scholar]
  15. P. Morin, R.H. Nochetto, K.G. Siebert, Local problems on stars: a posteriori error estimators, convergence, and performance, Math. Comp. 72 (2003) 1067–1097 [CrossRef] [MathSciNet] [Google Scholar]
  16. S. Prudhomme, F. Nobile, L. Chamoin, J.T. Oden, Analysis of a subdomain-based error estimator for finite element approximations of elliptic problems, Numer. Methods Partial Differ. Eqs. 20 (2004) 165–192 [CrossRef] [Google Scholar]
  17. J.P. Moitinho de Almeida, E.A.W. Maunder, Recovery of equilibrium on star patches using a partition of unity technique, Int. J. Numer. Meth. Eng. 2008, submitted [Google Scholar]
  18. A.M. Sauer-Budge, J. Bonet, A. Huerta, J. Peraire, Computing bounds for linear functionals of exact weak solutions to Poisson’s equation, SIAM J. Numer. Anal. 42 (2004) 1610–1630 [CrossRef] [MathSciNet] [Google Scholar]
  19. N. Parés, J. Bonet, A. Huerta, J. Peraire, The computation of bounds for linear-functional outputs of weak solutions to the two-dimensional elasticity equations, Comput. Methods Appl. Mech. Eng. 195 (2006) 406–429 [CrossRef] [Google Scholar]
  20. N. Parés, P. Díez, A. Huerta, Bounds of functional outputs for parabolic problems. Part I: Exact bounds of the discontinuous Galerkin time discretization, Comput. Methods Appl. Mech. Eng. 197 (2008) 1641–1660 [Google Scholar]
  21. N. Parés, P. Díez, A. Huerta, Bounds of functional outputs for parabolic problems. Part II: Bounds of the exact solution, Comput. Methods Appl. Mech. Eng. 197 (2008) 1661–1679 [Google Scholar]
  22. R. Cottereau, P. Díez, A. Huerta, Strict error bounds for linear solid mechanics problems using a subdomain-based flux-free method, Comp. Mech. 44 (2009) 533–547 [CrossRef] [Google Scholar]
  23. R. Becker, R. Rannacher, An optimal control approach to shape a posteriori error estimation in finite element methods, Acta Numerica 10 (2001) 1–102 [Google Scholar]
  24. S. Prudhomme, J.T. Oden, On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors, Comput. Methods Appl. Mech. Eng. 176 (1999) 313–331 [Google Scholar]
  25. J.J. Moreau, Fonctionnelles convexes, Cours du Collège de France, 1966 [Google Scholar]
  26. M. Paraschivoiu, J. Peraire, A.T. Patera, A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations, Comput. Methods Appl. Mech. Eng. 150 (1997) 23–50 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.