Open Access
Issue
Mécanique & Industries
Volume 11, Number 3-4, Mai-Août 2010
Giens 2009
Page(s) 255 - 264
DOI https://doi.org/10.1051/meca/2010037
Published online 27 October 2010
  1. http://www.haption.com [Google Scholar]
  2. D. James, D.K. Pai, ArtDefo, Accurate Real Time Deformable Objects, Computer Graphics ACM SIGGRAPH 99 Conference Proceedings, 1999, pp. 65–72 [Google Scholar]
  3. S. Cotin, H. Delingette, N. Ayache, A Hybrid Elastic Model allowing Real-Time Cutting, Deformations and Force-Feedback for Surgery Training and Simulation, Vis. Comput. 16 (2000) 437–452 [Google Scholar]
  4. C. Duriez, C. Andriot, A. Kheddar, Signorini’s contact model for deformable objects in haptic simulations, IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japon, 2004 [Google Scholar]
  5. N. Talbi, P. Joli, Z.-Q. Feng, A. Kheddar, Real time simulation of interaction between deformable objects with haptic feedback for solving friction multiple contacts, GRAPP 2008-Third International Conference on Computer Graphics Theory and Applications, Funchal, Madeira, Portugal, 2008 [Google Scholar]
  6. S. Niroomandi, I. Alfaro, E. Cueto, F. Chinesta, Real-time deformable models of non-linear tissues by model reduction techniques, Comp. Meth. Progr. Biomedicine 91 (2008) 223–231 [Google Scholar]
  7. M.M. Loève, Probability Theory, Van Nostrand, New Jersey, 1955 [Google Scholar]
  8. J.L. Dulong, F. Druesne, P. Villon, A model reduction approach for real-time part deformation with nonlinear mechanical behavior, Int. J. Interact. Des. Manuf. 1 (2007) 229–238 [Google Scholar]
  9. D. Ryckelynck, A priori hyperreduction method: an adaptive approach, J. Computat. Phys. 202 (2005) 346–366 [Google Scholar]
  10. M. Fortin, R. Glowinski, Augmented lagrangian methods : Application to the numerical solution of boundary value problems, North-Holland, Amsterdam, 1983 [Google Scholar]
  11. B. Lefevre, F. Druesne, J.L. Dulong, P. Villon, Simulation of a mechanical assembly using model reduction, The 8th World Congress on Computational Mechanics WCCM8, Venise, 2008 [Google Scholar]
  12. J. Lumley, The structure of inhomogeneous turbulent flows, Atmospheric Turbulence and Radio Wave Propagation, in A.M. Yaglom and Tararsky (ed.), 1967, pp. 166–178 [Google Scholar]
  13. P. Krysl, S. Lall, J.E. Marsden, Dimensional Model Reduction in Non-linear Finite Element Dynamics of Solids and Structures, Int. J. Num. Meth. Eng. 51 (2000) 479–504 [Google Scholar]
  14. N. Verdon, C. Allery, A. Hamdouni, D. Ryckelynck, Reduced-Order Modelling for solving linear and non-linear equations, Commun. Numer. Meth. Eng. (2010) [Google Scholar]
  15. D. Ryckelynck, Missoum Benzianze D., Multi-level a priori hyper-reduction of mechanical models involving internal variables, Comput. Methods Appl. Mech. Eng. 199 (2010) 1134–1142 [Google Scholar]
  16. http://www.ce.berkeley.edu/feap [Google Scholar]
  17. http://www.cims.nyu.edu/˜dbindel/feapmex/feapmex/doc/feapmex.html [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.