Open Access
Mécanique & Industries
Volume 11, Number 5, Septembre-Octobre 2010
Page(s) 345 - 363
Published online 24 December 2010
  1. O. Reynolds, On the theory of lubrication and its application to M. Beauchamp Tower’s experiments, Phil. Trans. Roy. Soc. London A 177 (1886) 157–234 [Google Scholar]
  2. S.T. Tzeng, E. Saibel, Surface roughness effect on slider lubrication, ASLE Trans. 10 (1967) 334 [Google Scholar]
  3. H. Christensen, Stochastics models for hydrodynamic lubrication of rough surfaces, Proc. IMechE 184 (Part 1) 1969–1970 [Google Scholar]
  4. J. Prakash, K. Tiwari, Lubrication of a porous bearing with surface corrugations, ASME J. Lub. Tech. 104 (1982) 127–34 [CrossRef] [Google Scholar]
  5. H. Christensen, K. Tonder, The hydrodynamic lubrication of rough bearing surfaces of finite width, Trans. ASME J. Lub. Techn. 93 (1971) 324–330 [CrossRef] [Google Scholar]
  6. H.G. Elrod, Thin-film lubrication theory for Newtonian fluids possessing striated roughness or grooving, ASME J. Lub. Tech. 95 (1973) 484–489 [Google Scholar]
  7. N. Patir, H.S. Cheng, Effect of surface roughness orientation on central film thickness in EHD contact, Proc. 5th Leeds-Lyon Symp. Trib., 1978, pp. 15–21 [Google Scholar]
  8. S. Boedo, J.F. Booker, Surface roughness and structural inertia in a mode-based mass conserving elastohydrodynamic lubrication model, Trans. ASME J. Trib. 119 (1997) 449–455 [CrossRef] [Google Scholar]
  9. P. Wang, T.G. Keith, Combined surface roughness of dynamically loaded journal bearings, Trib. Trans. 45 (2002) 1–10 [Google Scholar]
  10. J.R. Elrod, A cavitation algorithm, Trans. ASME J. Lub. Tech. 103 (1981) 350–354 [Google Scholar]
  11. D. Vijayaraghavan, J.R. Keith, Development and evaluation of a cavitation algorithm, Trib. Trans. 32 (1989) 225–233 [CrossRef] [Google Scholar]
  12. N.B. Naduvinamani, A. Siddangouda, Effect of surface roughness on the hydrodynamic lubrication of porous step-slider bearings with couple stress fluids, Trib. Int. 40 (2007) 780–793 [Google Scholar]
  13. C.C. Kweh, M.J. Patching, H.P. Evans, R.W. Snidle, Simulation of elastohydrodynamic contacts between rough surfaces, Trans. ASME J. Trib. 114 (1992) 412–419 [CrossRef] [Google Scholar]
  14. J.A. Greenwood, Morales, G.E. Espejel, The behavior of transverse roughness in elastohydrodynamic lubrication contact, Proc. of the IMechE J. Trib. Eng. Part J 208 (1994) 121–132. [Google Scholar]
  15. D. Zhu, X. Ai, Point contact elastohydrodynamic lubrication based on optically measured three-dimensional rough surfaces, Trans. ASME J. Trib. 119 (1997) 375–384 [Google Scholar]
  16. M.B. Dobrica, M. Fillon, P. Maspeyrot, Mixed elastohydrodynamic lubrication in partial journal bearings – comparison between deterministic and stochastic models, ASME J. Trib. 128 (2006) 778–788 [Google Scholar]
  17. M.B. Dobrica, M. Fillon, P. Maspeyrot, Influence of mixed lubrication and rough elastic-plastic contact on the performance of small fluid film bearings, STLE Trib. Trans. 51 (2008) 699–717 [CrossRef] [Google Scholar]
  18. V.A. Marchenko, E.Ya. Khruslov, Homogenization of partial differential equations, Birkhäuser, Boston, 2006 [Google Scholar]
  19. O. Hiroshi, F. Yasuyoshi, K. Noriyoshi, Homogenization method for heterogeneous material based on boundary element method, Comput. Struct. 79 (2001) 1987–2007 [Google Scholar]
  20. K. Marcin, Sensitivity and randomness in homogenization of periodic fiber-reinforced composites via the response function method, Int. J. Solids Struct. 46 (2009) 923–937 [CrossRef] [Google Scholar]
  21. G. Bayada, J.B. Faure, A double scale analysis approach of the Reynolds roughness comments and application to the journal bearing, J. Trib. 111 (1989) 323–330 [Google Scholar]
  22. M. Jai, Homogenization and two-scale convergence of the compressible Reynolds lubrication equation modelling the flying characteristics of a rough magnetic head over a rough rigid-disk surface, ASME J. Trib. 124 (2002) 327–335 [CrossRef] [Google Scholar]
  23. G. Bayada, S. Ciuperca, M. Jai, Homogenization of variational equations and inequalities with small oscillating parameters: Application to the study of thin film unstationary lubrication flow, C. R. Acad. Sci. Paris, t. 328, Série II b (2000) 819–824 [Google Scholar]
  24. M. Jai, B. Bou-Said, A comparison of homogenization and averaging techniques for the treatment of roughness in slip-flow-modified Reynolds equation, Trans. ASME J. Trib. 124 (2002) 327–335 [Google Scholar]
  25. G.C. Buscaglia, M. Jai, Homogenization of the generalized Reynolds equation for ultra-thin gas films and its resolution by FEM, J. Trib. 126 (2004) 547–552 [CrossRef] [Google Scholar]
  26. M. Kane, B. Bou-Said, Comparison of homogenization and direct techniques for the treatment of roughness in incompressible lubrication, J. Trib. 126 (2004) 733–737 [CrossRef] [Google Scholar]
  27. M. Kane, B. Bou-Said, A study of roughness and non-newtonian effects in lubricated contacts, ASME J. Trib. 127 (2005) 575–581 [CrossRef] [Google Scholar]
  28. A. Almqvist, D. Lukkassen, A. Meidell, P. Wall, New concepts of homogenization applied in rough surface hydrodynamic lubrication, Int. J. Eng. Sci. 45 (2007) 139–154 [CrossRef] [Google Scholar]
  29. A. Almqvist, E.K. Essel, L.E. Persson, P. Wall, Homogenization of the unstationary incompressible Reynolds equation, Trib. Int. 40 (2007) 1344–1350 [CrossRef] [Google Scholar]
  30. V.K. Stokes, Couple stresses in fluids, Phys. Fluids 9 (1966) 1709–1715 [CrossRef] [Google Scholar]
  31. M. Lahmar, B. Bou-Saïd, Couple-stresses effects on the dynamic behavior of connecting-rod bearings in both gosoline and diesel engines, J. Trib. Trans. STLE 51 (2008) 44–56 [Google Scholar]
  32. A. Kabouya, M. Lahmar, B. Bou-Saïd, Étude des paliers lisses mésalignés lubrifiés par des fluides à couple de contrainte, Mécanique & Industries 8 (2007) 577–595 [CrossRef] [EDP Sciences] [Google Scholar]
  33. H. Boucherit, M. Lahmar, B. Bou-Saïd, Misalignment effect on steady-state and dynamic behaviour of compliant journal bearings lubricated with couple stress fluids, J. Lubr. Sci. 20 (2008) 241–268 [Google Scholar]
  34. R.S. Gupta, L.G. Sharma, Analysis of couple stress lubricant in hydrostatic thrust bearings, Wear 48 (1988) 257–269 [Google Scholar]
  35. J.R. Lin, Static and dynamic characteristics of externally pressurized circular step thrust bearings lubricated with couple stress fluids, Trib. Int. 32 (1999) 207–216 [Google Scholar]
  36. P. Sinha, C. Singh, Couple stresses in the lubrication of rolling contact bearings considering cavitation, Wear 67 (1981) 85–91 [CrossRef] [Google Scholar]
  37. N.M. Bujurke, N.G. Naduvinami, The lubrication of the lightly cylinders in combined rolling, sliding and normal motion with couple stress fluid, Int. Mech. Sci. 32 (1990) 969–979 [CrossRef] [Google Scholar]
  38. J.R. Lin, Squeeze film characteristics of long partial journal bearings lubricated with couple stress fluids, Trib. Int. 30 (1997) 53–58 [Google Scholar]
  39. J.R. Lin, Squeeze film characteristics of finite journal bearings: couple stress fluid model, Trib. Int. 4 (1998) 201–207 [Google Scholar]
  40. J.R. Lin, C.B. Yang, R.F. Lu, Effects of couple stresses in the cyclic squeeze films of finite partial journal bearings, Trib. Int. 34 (2001) 119–125 [Google Scholar]
  41. N.B. Naduvinamani, P.S. Hiremath, G. Gurubasavaraj, Squeeze film lubrication of a short porous journal bearing with couple stress fluids, Trib. Int. 34 (2001) 739–747 [CrossRef] [Google Scholar]
  42. U.M. Mokhiamar, W.A. Crosby, H.A. El-Gamal, A study of a journal bearing lubricated by fluids with couple stress considering the elasticity of the liner, Wear 224 (1999) 194–201 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.