Open Access
Issue |
Mécanique & Industries
Volume 11, Number 5, Septembre-Octobre 2010
|
|
---|---|---|
Page(s) | 309 - 326 | |
DOI | https://doi.org/10.1051/meca/2010045 | |
Published online | 24 December 2010 |
- G. Mogenier, R. Dufour, G. Ferraris-Besso, L. Durantay, N. Barras, Identification of lamination stack properties. application to high speed induction motors, IEEE Trans. Ind. Electron. 57 (2010) 281–287 [CrossRef] [Google Scholar]
- R. Belmans, W. Heylen, A. Vandenput, W. Geysen, Influence of rotor-bar stiffness on the critical speed of an induction motor with an aluminium squirrel cage, in: IEEE Proc. B: Electric power Applications, Vol. 131, 1984, pp. 203–208 [Google Scholar]
- J. McClurg, Advantages of stiff shaft design on high speed, high horsepower squirrel cage induction motors and generators, in: 34th record of Conference Papers, Annual Petroleum and Chemical Industry Conference, 1987, pp. 259–263 [Google Scholar]
- S. Chang, D. Lee, Robust design of a composite air spindle, Polym. Compos. 23 (2002) 361–371 [CrossRef] [Google Scholar]
- J. Ede, D. Howe, Z. Zhu, Rotor resonances of high-speed permanent-magnet brushless machines, IEEE Trans. Ind. Appl. 38 (2002) 1542–1548 [CrossRef] [Google Scholar]
- S. Garvey, J. Penny, M. Friswell, A. Lees, The stiffening effect of laminated rotor cores on flexible-rotor electrical machines, IMechE Event Publications 2004 (2004) 193–202 [Google Scholar]
- Y.S. Chen, Y.D. Cheng, J.J. Liao, C.C. Chiou, Development of a finite element solution module for the analysis of the dynamic behavior and balancing effects of an induction motor system, Finite Elem. Anal. Des. 44 (2008) 483–492 [CrossRef] [Google Scholar]
- S. Garvey, The vibrational behaviour of laminated components in electrical machines, in: The 4th International Conference on Electrical Machines and Drives, 1989, pp. 226–231 [Google Scholar]
- S. Long, Z. Zhu, D. Howe, Vibration behaviour of stators of switched reluctance motors, IEEE Proc.: Electric Power Applications, 148 (2001) 257–264 [CrossRef] [Google Scholar]
- Z. Tang, P. Pillay, A.M. Omekanda, C. Li, C. Cetinkaya, Effects of material properties on switched reluctance motor vibration determination, in: Conference Record – IAS Annual Meeting (IEEE Industry Applications Society), Vol. 1, 2003 IEEE Industry Applications Conference, 38th IAS Annual Meeting – Crossroads To Innovation, Institute of Electrical and Electronics Engineers Inc., 2003, pp. 235–241 [Google Scholar]
- Y.-C. Kim, K. K-W, Influence of lamination pressure upon the stiffness of laminated rotor, JSME Int. J. Ser. C Mech. Syst., Machine Elements and Manufacturing 49 (2006) 426–431 [Google Scholar]
- C. Lee, T. Kam, Identification of mechanical properties of elastically restrained laminated composite plates using vibration data, J. Sound Vib. 295 (2006) 999–1016 [CrossRef] [Google Scholar]
- X. Feng, J. Zhou, Y. Fan, Method for identifying sub-regional material parameters of concrete dams using modal data, Acta Mech. Sol. Sin. 16 (2003) 88–94 [Google Scholar]
- J. Cugnoni, T. Gmür, A. Schorderet, Inverse method based on modal analysis for characterizing the constitutive properties of thick composite plates, Comput. Struct. 85 (2007) 1310–1320 [CrossRef] [Google Scholar]
- T. Lauwagie, K. Lambrinou, S. Patsias, W. Heylen, J. Vleugels, Resonant-based identification of the elastic properties of layered materials: application to air-plasma sprayed thermal barrier coatings, NDT and E Int. 41 (2008) 88–97 [CrossRef] [Google Scholar]
- I. Ojalvo, Efficient computation of mode-shape derivatives for large dynamic systems, AIAA J. 25 (1987) 1386–1390 [CrossRef] [Google Scholar]
- Y. Min, L. Zhong-Sheng, W. Da-Jun, Comparison of several approximate modal methods for computing mode shape derivatives, Comput. Struct. 62 (1997) 381–393 [Google Scholar]
- R. Nelson, Simplified calculation of eigenvector derivatives, AIAA J. 14 (1976) 1201–1205 [CrossRef] [MathSciNet] [Google Scholar]
- S. Andrieux, T. Baranger, Energy methods for Cauchy problems of evolutions equations, J. Phys.: Conf. S. 135 (2008) [Google Scholar]
- R.J. Guyan, Reduction of stiffness and mass matrices, AIAA J. 3 (1965) 380–380 [CrossRef] [Google Scholar]
- L.F.F. Miguel, R.C.R. de Menezes, L.F.F. Miguel, Mode shape expansion from data-based system identification procedures, Mec. Compu., Dynam. Vibr. (A) 25 (2006) 1593–1602 [Google Scholar]
- F. Kuratani, T. Shimada, T. Yamano, T. Ogawa, Structural modification with mode shape expansion for rib stiffeners, JSME Int. J. S. C Mech. Syst., Machine Elements and Manufacturing 49 (2006) 771–778 [Google Scholar]
- J.-S. Przemieniecki, Theory of Matrix Structural Analysis, 46th edition, Dover Publications, INC., New York, 1985 [Google Scholar]
- M. Lalanne, G. Ferraris, Rotordynamics Prediction in Engineering, 2nd edition,John Wiley and Sons Ltd, New York, 1998 [Google Scholar]
- G. Genta, Dynamics of Rotating Systems, Springer Verlag, 2005 [Google Scholar]
- G. Cowper, The shear coefficient in Timoshenko’s beam theory, J. Appl. Mech. 33 (1966) 335–340 [Google Scholar]
- T. Gmür, Dynamique des structures: Analyse modale numérique, Presses Polytechniques et Universitaires Romandes, 1997 [Google Scholar]
- H. Nielsen, Damping parameter in Marquardt’s method, Technical report, Technical Univ. of Denmark, 1999 [Google Scholar]
- D. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Ind. Appl. Math. 11 (1963) 431–441 [Google Scholar]
- G. Mogenier, R. Dufour, G. Ferraris-Besso, L. Durantay, N. Barras, Optimization procedure for identifying constitutive properties of high speed induction motor, Proc. 2008 Int. Conf. Electrical Machines, ICEM’08, 2008 [Google Scholar]
- C. Morales, Comments on the MAC and the NCO, and a linear modal correlation coefficient, J. Sound Vib. 282 (2005) 529–537 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.