Open Access
Issue
Mécanique & Industries
Volume 11, Number 5, Septembre-Octobre 2010
Page(s) 327 - 337
DOI https://doi.org/10.1051/meca/2010046
Published online 24 December 2010
  1. N.M. Bujurke, H.P. Patil, An analysis of squeeze film action in porous layered bearings, Wear 145 (1991) 385–397 [CrossRef] [Google Scholar]
  2. N.M. Bujurke, R.B. Kudenatti, Surface roughness effects on squeeze film poroelastic bearings, Appl. Math. Comput. 174 (2006) 1181–1195 [CrossRef] [MathSciNet] [Google Scholar]
  3. N.M. Bujurke, C.S. Salimath, R.B. Kudenatti, S.C. Shiralashetti, Wavelet-multigrid analysis of squeeze film characteristics of poroelastic bearings, J. Comput. Appl. Math. 203 (2007) 237–248 [CrossRef] [MathSciNet] [Google Scholar]
  4. N.M. Bujurke, R.B. Kudenatti, V.B. Awati, Effects of roughness on squeeze film poroelastic bearings with special reference to synovial joints, Math. Biosc. 209 (2007) 76–89 [CrossRef] [Google Scholar]
  5. P.N. Tandon, J.K. Misra, R.S. Gupta, Satyanand, Role of ultrafiltration of synovial fluid in lubrication of human joints, Int. J. Mech. Sci. 27 (1985) 29–37 [CrossRef] [Google Scholar]
  6. M. Hlavacek, The role of synovial fluid filtration by cartilage in lubrication of synovial joints – II, Squeeze-film lubrication: homogeneous filtration, J. Biomech. 26 (1993) 1151–1160 [CrossRef] [PubMed] [Google Scholar]
  7. M. Hlavacek, The role of synovial fluid filtration by cartilage in lubrication of synovial joints – III, Squeeze-film lubrication: axial symmetry under low loading conditions, J. Biomech. 28 (1995) 1193–1195 [CrossRef] [PubMed] [Google Scholar]
  8. M. Hlavacek, The role of synovial fluid filtration by cartilage in lubrication of synovial joints – IV, Squeeze-film lubrication: the central film thickness for normal and inflammatory synovial fluids for axial symmetry under high loading conditions, J. Biomech. 28 (1995) 1199–1205 [PubMed] [Google Scholar]
  9. M. Hlavacek, Squeeze-film lubrication of the human ankle joint with synovial fluid filtrated by articular cartilage with the superficial zone worn out, J. Biomech. 33 (2000) 1415–1422 [CrossRef] [PubMed] [Google Scholar]
  10. M. Hlavacek, The influence of the acetabular labrum seal intact articular superficial zone and synovial fluid thixotropy on squeeze-film lubrication of spherical synovial joint, J. Biomech. 35 (2002) 1325–1335 [CrossRef] [PubMed] [Google Scholar]
  11. J.S. Hou, V.C. Mow, W.M. Lai, M.H. Holmes, An analysis of the squeeze-film lubrication mechanics for articular cartilage, J. Biomech. 25 (1992) 247–259 [CrossRef] [PubMed] [Google Scholar]
  12. A.E. Scheidigger, The physics of flow through porous media, The MacMillan Co., New York, 1957 [Google Scholar]
  13. N.M. Bujurke, M. Jagadeeswar, P.S. Hiremath, Analysis of normal stress effects in a squeeze film porous bearings, Wear 116 (1987) 237–248 [Google Scholar]
  14. N.M. Bujurke, M. Jagadeeswar, P.S. Hiremath, Analysis of squeeze film lubrication between two rectangular porous plates with a second-order fluid, Wear 132 (1989) 303–320 [CrossRef] [Google Scholar]
  15. N.M. Bujurke, N.B. Naduvinamani, A note on squeeze film between rough anisotropic porous rectangular plates, Wear 217 (1998) 225–230 [CrossRef] [Google Scholar]
  16. N.B. Naduvinamani, S.T. Fathima, P.S. Hiremath, Effect of surface roughness on characteristics of couple stress squeeze film between anisotropic porous rectangular plates, Fluid Dyn. Res. 32 (2003) 217–231 [CrossRef] [Google Scholar]
  17. P. Sinha, C. Singh, K.R. Prasad, Lubrication of human joints – a microcontinum approach, Wear 80 (1982) 159–181 [Google Scholar]
  18. P. Jurczak, Pressure distribution in a squeeze film biobearing lubrication by a synovial fluid, Int. J. Appl. Mech. Eng. 11 (2006) 857–864 [Google Scholar]
  19. K.H. Zaheerduddin, M. Isa, Characteristics of a micropolar lubricant in a squeeze film porous spherical bearing, Wear 52 (1978) 1–10 [CrossRef] [Google Scholar]
  20. K.H. Zaheerduddin, The dynamic behaviour of squeeze films in one-dimensional porous journal bearing lubricated by a micropolar fluid, Wear 71 (1981) 139–152 [CrossRef] [Google Scholar]
  21. N.B. Naduvinamani, P.S. Hiremath, G. Gurubasavaraj, Squeeze film lubrication of short porous journal bearing with couple stress fluids, Tribol. Int. 34 (2001) 739–747 [Google Scholar]
  22. N.B. Naduvinamani, S.B. Patil, Numerical solution of finite modified Reynolds equation for couple stress squeeze film lubrication of porous journal bearings, Comput. Struct. 87 (2009) 1287–1295 [Google Scholar]
  23. P.R.K. Murti, Squeeze films in porous circular disks, Wear 23 (1973) 283–289 [CrossRef] [Google Scholar]
  24. P.R.K. Murti, Squeeze-film behaviour in porous circular disks, ASME J. Lubr. Techno 96 (1974) 206–209 [CrossRef] [Google Scholar]
  25. M.M.H. Megat Ahmad, D.T. Gethin, T.C. Claypole, B.J. Roylance, Numerical and experimental investigation into porous squeeze films, Tribol. Int. 31 (1998) 189–199 [CrossRef] [Google Scholar]
  26. U. Srinvasan, Load capacity and time-height relationships for squeeze films between double-layered porous plates, Wear 43 (1977) 211–225 [CrossRef] [Google Scholar]
  27. G.S. Beavers, D.D. Joseph, Boundary conditions on a naturally permeable wall, J. Fluid Mech. 30 (1967) 197–207 [CrossRef] [Google Scholar]
  28. H.C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Appl. Sci. Res. A1 (1947) 27–34 [Google Scholar]
  29. J.R. Lin, C.C. Hwang, Lubrication of short porous journal bearing – use of the Brinkman-extended Darcy model, Wear 161 (1993) 93–104 [CrossRef] [Google Scholar]
  30. J.R. Lin, Optimal design of one-dimensional porous slider bearing using the Brinkman model, Trib. Int. 34 (2001) 57–64 [CrossRef] [Google Scholar]
  31. Ming-Da Chen, Kuo-Ming Chang, J.R. Lin, W.L. Li, Lubrication of journal bearings – influence of stress jump condition at porous media/fluid film interface, Trib. Int. 35 (2002) 287–295 [Google Scholar]
  32. A. Elsharkawy, L.H. Guedouar, Hydrodynamic lubrication of porous journal bearings using a modified Brinkman-extended Darcy model, Trib. Int. 34 (2001) 767–777 [CrossRef] [Google Scholar]
  33. R.J. Lin, Viscous shear effects on the squeeze-film behaviour in porous circular disks, Int. J. Mech. Sci. 38 (1996) 373–384 [CrossRef] [Google Scholar]
  34. A. Cameron, Basic Lubrication Theory, Wiley Eastern Ltd, New York, 1987 [Google Scholar]
  35. J.R.A. Pearson, P.M.J. Tardy, Models for flow of non Newtonian and complex fluids through porous media, J. Non Newtonian Fluid Mech. 102 (2002) 447–473 [Google Scholar]
  36. D.A. Nield, A. Bejan, Convection in porous media 2nd edition, Spring-verlag: New York, 1999 [Google Scholar]
  37. S. Liu, J.H. Masliyah, Dispersion in porous media. Handbook of Porous Media, K. Vafai (ed.), 2nd edition, Taylor and Francis, Boca, Raton, FL, 81–140, 2005 [Google Scholar]
  38. F.J. Valdes-Parada, J.A. Ochoa-Tapia, J. Alvarez-Ramirez, On the effective viscosity for the Darcy-Brinkman equation, Phys. A 385 (2007) 69–79 [CrossRef] [MathSciNet] [Google Scholar]
  39. S. Whitaker, The Method of Volume Averaging, Kluwer, Dordrecht, 1999, p. 173 [Google Scholar]
  40. H. Liu, P.R. Patil, U. Narusawa, On Darcy-Brinkman Equation: Viscous Flow Between Two Parallel Plates Packed with Regular Square Arrays of Cylinders, Entropy 9 (2007) 118–131 [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.