Open Access
Issue
Mécanique & Industries
Volume 11, Number 5, Septembre-Octobre 2010
Page(s) 407 - 417
DOI https://doi.org/10.1051/meca/2010054
Published online 24 December 2010
  1. B. Raniecki, C. Lexcellent, K. Tanaka, Thermodynamic models of pseudoelastic behavior of shape memory alloys, Arch. Meh. 44 (1992) 261–284 [Google Scholar]
  2. I. Müller, On the size of the hysteresis in pseudo-elasticity, Continum Mech. Thermodyn. 1 (1989) 125–142 [Google Scholar]
  3. I. Müller, H. Xu, On the pseudoelastic hysteresys, Acta. Met. Mat. 39 (1991) 263–271 [Google Scholar]
  4. L. Juhasz, E. Schnack, O. Hesebeck, H. Andrä, Macroscopic modeling of shape memory alloys under non-proportional thermo-mechanical loadings, J. Intel. Mat. Syst. Struc. 18 (2002) 25–836 [Google Scholar]
  5. D. Helm, P. Haupt, Shape memory behaviour: modelling within continuum thermomechanics, Int. J. Solids Struct. 40 (2003) 827–849 [Google Scholar]
  6. P. Vacher, Étude du comportement pseudoélastique d’alliages à mémoire de forme CuZnAl polycristallins, Thèse, Université de Franche-Comté, 1991 [Google Scholar]
  7. C. Gonzalez, Étude des comportements électro-thermomécaniques et de la stabilisation martensitique d’alliages monocristallins à mémoire de forme base cuivre, Thèse, INSA de Lyon, 2002 [Google Scholar]
  8. T. Kotil, H. Sehitoglu, H. Maier, H. Chumlyakov, Transformation and detwinning induced electrical resistance variations in niticu, Mat. Eng. 329 (2003) 280–289 [Google Scholar]
  9. C. Lexcellent, J. Rejzner, Modeling of the strain rate effect, creep and relaxation of a Ni-Ti shape memory alloy under tension (compression)-torsional proportional loading in the pseudoelastic range, Smart Mater. Struct. 9 (1998) 613–621 [Google Scholar]
  10. J. Rejzner, Modélisation des alliages à mémoire de forme soumis à des sollicitations multiaxiales ou à des gradients de contrainte, Thèse, Université de Franche-Comté, 2000 [Google Scholar]
  11. T.J. Lim, D.L. Mc Dowell, Mechanical behavior of an NiTi shape memory alloy under axial-torsional proportional and non proportional loading, J. Eng. Mater. Tech. 121 (1999) 9–18 [Google Scholar]
  12. F. Thiebault, De l’étude dynamique des alliages à mémoire de forme à l’optimisation de leur effet amortissant, Thèse, Université de Franche-Comté, 2007 [Google Scholar]
  13. F. Thiebault, C. Lexcellent, M. Collet, E. Foltete, Implementation of a model taking into account the asymmetry between tension and compression, the temperature effects in a finite element code for shape memory alloys structures calculations, Comput. Mat. Sci. 41 (2007) 208–221 [Google Scholar]
  14. B. Vieille, De l’élaboration d’un modèle numérique à la prédiction du comportement de structures minces en alliage à mémoire de forme, Thèse, Université de Franche-Comté, 2003 [Google Scholar]
  15. P.N. Brown, A.C. Hindmarsh, L.R. Petzold, Using Krylov methods in the solution of large-scale differential-algebraic systems, SIAM J. Sci. Comput. 15 (1994) 1467–1488 [Google Scholar]
  16. T.A. Davis, Algorithm 832: UMFPACK V4.3, an unsymmetric-pattern multifrontal method, ACM Trans. Math. Softw. 30 (2004) 196–199 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.