Open Access
Mécanique & Industries
Volume 11, Number 6, Novembre-Décembre 2010
VCB (Vibrations, Chocs et Bruits)
Page(s) 477 - 488
Published online 15 November 2010
  1. S. Le Lez, Caractéristiques Statiques et Dynamiques des Paliers à Feuilles, Thèse de Doctorat, Université de Poitiers, 2007 [Google Scholar]
  2. H. Heshmat, J. Walowit, O. Pinkus, Analysis of Gas-Lubricated Compliant Journal Bearings, ASME J. Lubr. Tech. 105 (1983) 647–655 [Google Scholar]
  3. M. Carpino, G. Talmage, Prediction of Rotor Dynamic Coefficients in Gas Lubricated Foil Journal Bearings with Corrugated Sub-Foils, STLE Tribol. Trans. 49 (2006) 400–409 [Google Scholar]
  4. L. San Andrés, T.H. Kim, Improvements to the Analysis of Gas Foil Bearings Integration of Top Foil 1d and 2d Structural Models, GT2007-27249, 2007 [Google Scholar]
  5. S. Le Lez, M. Arghir, J. Frêne, Nonlinear Numerical Prediction of Gas Foil Bearings Stability and Unbalanced Response, ASME J. Eng. Gas Turbines Power 131 (2009) 012503–12 [Google Scholar]
  6. G. Grau, Paliers aérodynamiques radiaux à structure à feuilles: Contribution à l’étude statique et comportement dynamique non linéaire, Thèse de doctorat, INSA de Lyon, 2004 [Google Scholar]
  7. B. Ertas, M. Drexel, J. Van Dam, D. Hallman, A General Purpose Test Facility for Evaluating Gas Lubricated Journal Bearings, The 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, ISROMAC12-2008-20207, 2008 [Google Scholar]
  8. B. Ertas, Compliant Hybrid Journal Bearings Using Integral Wire Mesh Dampers, GT2008-50984, 2008 [Google Scholar]
  9. L. Rudloff, M. Arghir, O. Bonneau, P. Matta, Experimental Analysis of a First Generation Foil Bearing, Start-up Torque and Dynamic Coefficients, Proceedings of ASME Turbo Expo, GT2010-22966, 2010 [Google Scholar]
  10. P. Matta, M. Arghir, O. Bonneau, Experimental Analysis of Cylindrical Air Bearing Dynamic Coefficients, Tribology Trans. 53 (2009) 329–339 [Google Scholar]
  11. C. Rouvas, D.W. Childs, A Parameter Identification Method for the Rotordynamic Coefficients of a High Reynolds Number Hydrostatic Bearing, ASME J. Vib. Acoust. 115 (1993) 264–270 [Google Scholar]
  12. L. San Andrés, S. Diaz, A Method for Identification of Bearing Force Coefficients and its Application to a Squeeze Film Damper With a Bubbly Lubricant, Tribology Trans. 42 (1999) 739–746 [Google Scholar]
  13. M. Arghir, P. Matta, Compressibility effects on the dynamic characteristics of gas lubricated mechanical components, C. R. Mecanique (2009), doi:10.1016/j.crme.2009.09.002 [Google Scholar]
  14. N. Geerts, Linear Dynamic Analysis of Rotorsystems with Gas Bearings, Master’s thesis WFW-report 95.090, WFW, Faculty of Mechanical Engineering, Eindhoven University of Technology, 1995 [Google Scholar]
  15. J.W. Roblee, Design of Externally Pressurized Gas Bearings for Dynamic Applications, Ph.D. Thesis, University of California, Berkley, CA, 1985 [Google Scholar]
  16. L. San Andrés, Fluid Compressibility Effects on the Dynamic Response of Hydrostatic J. Bearings, Wear 146 (1991) 269–283 [Google Scholar]
  17. G. Kleynhans, D. Childs, The Acoustic Influence of Cell Depth on the Rotordynamic Characteristics of Smooth-Rotor/Honeycomb-Stator Annular Gas Seals, ASME J. Eng. Gas Turbines Power 119 (1997) 949–957 [Google Scholar]
  18. M. Fourka, Y. Tian, M. Bonis, Prediction of the stability of air thrust bearings by numerical, analytical and experimental methods, Wear 198 (1998) 1–6 [Google Scholar]
  19. P. Matta, Analyse Expérimentale des Paliers Aérodynamiques, thèse de Doctorat, Université de Poitiers, 2009 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.