Open Access
Mécanique & Industries
Volume 12, Number 3, 2011
CFM 2011
Page(s) 223 - 229
Published online 20 July 2011
  1. Y.M. Xing, J. Lu, An experimental study of residual stress induced by ultrasonic shot peening, J. Mater. Process. Technol. 152 (2004) 56–61 [CrossRef] [Google Scholar]
  2. B.N. Mordyuk, G.I. Prokopenko, Ultrasonic impact peening for the surface properties’ management, J. Sound Vib. 308 (2007) 855–866 [CrossRef] [Google Scholar]
  3. B.L. Boyce, X. Chen, J.W. Hutchinson, R.O. Ritchie, The residual stress state due to a spherical hard-body impact, Mech. Mater. 33 (2001) 441–454 [Google Scholar]
  4. H.Y. Miao, S. Larose, C. Perron, M. Lévesque, On the potential applications of a 3D random finite element model for the simulation of shot peening, Adv. Eng. Softw. 40 (2009) 1023–1038 [CrossRef] [Google Scholar]
  5. G.H. Majzoobi, R. Azizi, A. Alavi Nia, A three-dimensional simulation of shot peening process using multiple shot impacts, J. Mater. Process. Technol. 164–165 (2005) 1226–1234 [Google Scholar]
  6. M. Frija, T. Hassine, R. Fathallah, C. Bouraoui, A. Dogui, Finite element modelling of shot peening process: prediction of the compressive residual stresses, the plastic deformations and the surface integrity, Mater. Sci. Eng. A 426 (2006) 173–180 [Google Scholar]
  7. I. Chaieb, Analyse et simulation des contraintes résiduelles induites par des traitements mécaniques de précontrainte en grenaillage et choc laser, Thèse, Université de Reims Champagne-Ardenne, 2004 [Google Scholar]
  8. A.S. Franchima, V.S. de Campos, D.N. Travessa, C. de Moura Neto, Analytical modelling for residual stresses produced by shot peening, Materials and Design 30 (2009) 1556–1560 [CrossRef] [Google Scholar]
  9. C. Ould Mohamed Mahmoud, Analyse des contraintes résiduelles générées lors du grenaillage: approches analytique, numérique et expérimentale des impacts de billes, Thèse, Université de Technologie de Troyes, 2007 [Google Scholar]
  10. Y. Jiyan, W. Xiaoming, L. Yongxin, Velocity and position measurement for projectile using double optical detectors and reflectors, Symposium on Photonics and Optoelectronics, 2009 [Google Scholar]
  11. M. Sommerfeld, N. Huber, Experimental analysis and modelling of particle-wall collisions, Int. J. Multiphase Flow 25 (1999) 1457–1489 [CrossRef] [Google Scholar]
  12. A. Hribernik, G. Bombek, Improved method for shot particle velocity measurement within a shotblasting chamber, Flow Meas. Instrum. 17 (2006) 99–105 [CrossRef] [Google Scholar]
  13. H. Chardin, Étude de la densification par grenaillage ultrasons d’un matériau métallique poreux élaboré par métallurgie des poudres, Thèse, École Nationale Supérieure des Mines de Paris, 1996 [Google Scholar]
  14. N.V. Brilliantov, F. Spahn, J.M. Hertzsch, T. Pöschel, Model for collisions in granular gases, Phys. Rev. E 53 (1996) 5382 [CrossRef] [PubMed] [Google Scholar]
  15. R.M. Brach, Impact dynamics with applications to solid particle erosion, Int. J. Impact Eng. 7 (1998) 37–53 [CrossRef] [Google Scholar]
  16. S. McNamara, E. Falcon, Simulations of vibrated granular medium with impact-velocity-dependent restitution coefficient, Phys. Rev. E 71 (2005) 031302 [CrossRef] [Google Scholar]
  17. M. Micoulaut, S. Mechkov, D. Retraint, P. Viot, M. François, Granular gases in mechanical engineering: on the origin of heterogeneous ultrasonic shot peening, Granular Matter 9 (2007) 25–33 [Google Scholar]
  18. M. Micoulaut, D. Retraint, P. Viot, M. François, Heterogeneous ultrasonic shot peening: experiment and simulation, ICSP9, Marne la Vallée, France, 2005, pp. 119–124 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.