Open Access
Issue
Mechanics & Industry
Volume 13, Number 3, 2012
Page(s) 151 - 162
DOI https://doi.org/10.1051/meca/2012014
Published online 16 November 2012
  1. P. Fauchais, Understanding plasma spraying, J. Phys. D : Appl. Phys. 37 (2004) 86–108 [Google Scholar]
  2. F. Gitzhofer, Induction plasma technology applied to the combinatorial synthesis of coatings using suspensions and solutions precursors, The 3th international workshop RIPT (Les Rencontres Internationales sur la Projection Thermique) University of Sciences and Technologies of Lille, France, 2007 [Google Scholar]
  3. Z. Mohammadi, A.A. Ziaei-Moayyed, A.S.M. Mesgar, Adhesive and cohesive properties by indentation method of plasma-sprayed hydroxyapatite coatings, Appl. Surf. Sci. 253 (2007) 4960–4965 [Google Scholar]
  4. Z.J. Yin, S.Y. Tao, X.M. Zhou, C.X. Ding, Evaluating microhardness of plasma sprayed Al2O3 coatings using Vickers indentation technique, J. Phys. D – Appl. Phys. 40 (2007) 7090–7096 [Google Scholar]
  5. K.D. Bouzakis, A. Lontos, N. Michailidis, O. Knotek, E. Lugscheider, K. Bobzin, A. Etzkorn, Determination of mechanical properties of electron beam-physical vapor deposition-thermal barrier coatings (EB-PVD-TBCs) by means of nanoindentation and impact testing, Surf. Coatings Technol. 163-164 (2003) 75–80 [Google Scholar]
  6. J.F. Li, X.Y. Wang, H. Liao, C.X. Ding, C. Coddet, Indentation analysis of plasma-sprayed Cr3C2-NiCr coatings, J. Mater. Sci. 39 (2004) 7111–7114 [Google Scholar]
  7. C.K. Lin, C.C. Berndt, Statistical analysis of microhardness variations in thermal spray coatings, J. Mater. Sci. 30 (1995) 111–117 [Google Scholar]
  8. S.H. Leigh, C.C. Berndt, Evaluation of off-angle thermal spray, Surf. & Coatings Technol. 89 (1997) 213–224 [Google Scholar]
  9. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564–1583 [NASA ADS] [CrossRef] [Google Scholar]
  10. A.C. Fischer-Cripps, Nanoindentation, Berlin : Springer-Verlag, New York, NY, 2002 [Google Scholar]
  11. J.P. Ponthot, Unified stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes, Int. J. Plastic. 18 (2002) 91–126 [Google Scholar]
  12. P.Z. Berke, Numerical modeling of the surface and the bulk deformation in a small scale contact, Application to the nanoindentation interpretation and to the micro-manipulation, PhD thesis, Université Libre de Bruxelles, Bruxelles, Belgium, 2008 [Google Scholar]
  13. G. Rauchs, Optimization-based material parameter identification in indentation testing for finite strain elasto-plasticity, ZAMM, J. Appl. Math. Mech. 86 (2006) 539–562 [Google Scholar]
  14. M. Dao, N. Chollacoop, K.J. Van Vliet, T.A. Venkatesh, S. Suresh, Computational modeling of the forward and reverse problems in instrumented sharp indentation, Acta Materialia 49 (2001) 3899–3918 [Google Scholar]
  15. G. Bolzon, G. Maier, M. Panico, Material model calibration by indentation, imprint mapping and inverse analysis, Int. J. Solids Struct. 41 (2004) 2957–2975 [Google Scholar]
  16. X. Chen, N. Ogasawara, M. Zhao, N. Chiba, On the uniqueness of measuring elastoplastic properties from indentation : the indistinguishable mystical materials, J. Mech. Phys. Sol. 55 (2007) 1618–1660 [Google Scholar]
  17. S. Stupkiewicz, J. Korelc, M. Dutko, T. Rodic, Shape sensitivity analysis of large deformation frictional contact problems, Comput. Methods in Appl. Mech. Eng. 191 (2002) 3555–3581 [Google Scholar]
  18. M. Bocciarelli, G. Bolzon, G. Maier, Parameter identification in anisotropic elastoplasticity by indentation and imprint mapping, Mech. Mat. 37 (2005) 855–868 [Google Scholar]
  19. M. Mata, J. Alcala, The role of friction on sharp indentation, J. Mech. Phys. Sol. 52 (2004) 145–165 [Google Scholar]
  20. A. Gouldstone, N. Chollacoop, M. Dao, J. Li, A.M. Minor, Y.L. Shen, Indentation across size scales and disciplines : Recent developments in experimentation and modeling, Acta Materialia 55 (2007) 4015–4039 [Google Scholar]
  21. H.J. Albrecht, T. Hannach, A. Hase, A. Juritza, K. Muller, W.H. Muller, Nanoindentation : a suitable tool to determine local mechanical properties in microelectronic packages and materials?, Archive of Applied Mechanics 74 (2005) 728–738 [Google Scholar]
  22. M. Vandamme, F.J. Ulm, Viscoelastic solutions for conical indentation, Int. J. Sol. Struct. 43 (2006) 3142–3165 [Google Scholar]
  23. A.E. Giannakopoulos, Elastic and viscoelastic indentation of flat surfaces by pyramid indentors, J. Mech. Phys. Sol. 54 (2006) 1305–1332 [Google Scholar]
  24. Y. Wang, D. Raabe, C. Kluber, F. Roters, Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals, Acta Materialia 52 (2004) 2229–2238 [Google Scholar]
  25. L. Cheng, X. Xia, L.E. Scriven, W.W. Gerberich, Spherical-tip indentation of viscoelastic material, Mech. Mat. 37 (2005) 213–226 [Google Scholar]
  26. J.P. Ponthot, J.P. Kleinermann, A cascade optimization methodology for automatic parameter identification and shape/process optimization in metal forming simulation, Comput. Methods Appl. Mech. Eng. 195 (2006) 5472–5508 [Google Scholar]
  27. Hysitron, TriboIndenter User’s Manual, Hysitron Inc., 2005 [Google Scholar]
  28. K.D. Bouzakis, N. Michailidis, S. Hadjiyiannis, G. Skordaris, G. Erkens, The effect of specimen roughness and indenter tip geometry on the determination accuracy of thin hard coatings stress-strain laws by nanoindentation, Materials Characterization 49 (2003) 149-156 [Google Scholar]
  29. J.P. Ponthot, finite-element code. METAFOR, http://metafor.ltas.ulg.ac.be/dokuwiki/, 2010 [Google Scholar]
  30. J.L. Bucaille, E. Felder, G. Hochstetter, Identification of the viscoplastic behavior of a polycarbonate based on experiments and numerical modeling of the nano-indentation test, J. Mater. Sci. 37 (2002) 3999–4011 [Google Scholar]
  31. J.M. Antunes, L.F. Menezes, J.V. Fernandes, Influence of Vickers tip imperfection on depth sensing indentation tests, Int. J. Sol. Struct. 44 (2007) 2732–2747 [Google Scholar]
  32. S.M. Jeong, H.L. Lee, finite-element analysis of the tip deformation effect on nanoindentation hardness, Thin Solid Films 492 (2005) 173–179 [Google Scholar]
  33. N. Yu, A.A. Polycarpou, T.F. Conry, Tip-radius effect in finite-element modeling of sub-50 nm shallow nanoindentation, Thin Solid Films 450 (2004) 295–303 [Google Scholar]
  34. A.J.A. Winnubst, K. Keizer, A.J. Burggraaf, Mechanical properties and fracture behaviour of ZrO2-Y2O3 ceramics, J. Mater. Sci. 18 (1983) 1958–1966 [Google Scholar]
  35. Z.M. Zhao, L. Zhang, Y.G. Song, W.G. Wang, H.B. Liu, Composition, microstructures and properties of Al2O3/ZrO2 (Y2O3) self-growing ceramic composites prepared by combustion synthesis under high gravity, J. Phys. : Conf. Ser. 152 (2009) 012085 [Google Scholar]
  36. X. Chen, J.J. Vlassak, Numerical study on the measurement of thin film mechanical properties by means of nanoindentation, J. Mater. Res. 16 (2001) 2974–2982 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.