Open Access
Issue
Mechanics & Industry
Volume 13, Number 3, 2012
Page(s) 163 - 174
DOI https://doi.org/10.1051/meca/2012010
Published online 16 November 2012
  1. C.M. Lieber, Nanoscale science and technology : building a big future from small things, MRS Bull 28 (2003) 486–491 [Google Scholar]
  2. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures : synthesis, characterization, and applications, Adv. Mater. 15 (2003) 353–389 [CrossRef] [Google Scholar]
  3. C.M. Lieber, Z.L. Wang, Functional Nanowires, MRS Bull. 32 (2007) 99–108 [CrossRef] [Google Scholar]
  4. L.T. Canham, Silicon quantum wire array fabricated by electrochemical and chemical dissolution of wafers, Appl. Phys. Lett. 57 (1990) 1046–48 [CrossRef] [Google Scholar]
  5. E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics : elasticity, strength, and toughness of nanorods and nanotubes, Science 277 (1997) 1971–75 [CrossRef] [Google Scholar]
  6. N. Kacem, S. Baguet, S. Hentz, R. Dufour, Nonlinear phenomena in nanomechanical resonators : mechanical behaviors and physical limitations, Mécanique & Industries 11 (2010) 521–529 [CrossRef] [EDP Sciences] [Google Scholar]
  7. Y. Cui, Z. Zhong, D. Wang, W.U. Wang, C.M. Lieber, High performance silicon nanowire field effect transistors, Nano. Lett. 3 (2003) 149–152 [Google Scholar]
  8. M. Cahay, J.P. Leburton, D.J. Lockwood, S. Bondyopadhyay, J.S. Harris, Quantum confinement VI : nanostructured materials and devices, Electrochemical Society, inc. USA, 2001 [Google Scholar]
  9. H. Haug, S.W. Koch, Quantum theory of the optical and electronic properties of semiconductors, World Scientific, Singapore, 2004 [Google Scholar]
  10. V.B. Shenoy, Atomistic calculations of elastic properties of metallic fcc crystal surfaces, Phys. Rev. B. 71 (2005) 094104–11 [Google Scholar]
  11. H.G. Craighead, Nanoelectromechanical systems, Science 290 (2000) 1532–35 [CrossRef] [PubMed] [Google Scholar]
  12. K.L. Ekinci, M.L. Roukes, Nanoelectromechanical systems. Rev. Sci. Instrum. 76 (2005) 061101–12 [Google Scholar]
  13. R. Michael, S.C. Wolfram, Handbook of theoretical and computational nanotechnology, American Scientific, 2005, Vol. 1 [Google Scholar]
  14. J. Diao, K. Gall, M.L. Dunn, Atomistic simulation of the structure and elastic properties of gold nanowires, J. Mech. Phys. Sol. 52 (2004) 1935–1962 [CrossRef] [Google Scholar]
  15. H.A. Wu, Molecular dynamics study on mechanics of metal nanowire, Mech. Res. Commun. 33 (2006) 9–16 [CrossRef] [Google Scholar]
  16. Z.L. Wang, Mechanical properties of nanowires and nanobelts, Dekker Encyclopedia of Nanoscience and Nanotechnology (2004) 1773–1786, DOI : 10.1081/E-ENN.120013387 [Google Scholar]
  17. G.Y. Jing, H.L. Duan, X.M. Sun, Z.S. Zhang, J. Xu, Y.D. Li, J.X. Wang, D.P. Yu, Surface effects on elastic properties of silver nanowires : Contact atomic-force microscopy, Phys. Rev. B 73 (2006) 235409–6 [CrossRef] [Google Scholar]
  18. Y.X. Chen, B.L. Dorgan, D.N. McIlroy, D.E. Aston, On the importance of boundary conditions on nanomechanical bending behavior and elastic modulus determination of silver nanowires, J. Appl. Phys. 100 (2006) 104301–7 [CrossRef] [Google Scholar]
  19. C.Q. Chen, Y.S. Zhang, J. Zhu, Y.J. Yan, Size dependence of Young’s modulus in ZnO nanowires, Phys. Rev. Lett. 96 (2006) 075505–4 [CrossRef] [PubMed] [Google Scholar]
  20. R.E. Miller, V.B. Shenoy, Size-dependent elastic properties of nanosized structural elements, Nanotechnology 11 (2000) 139–147 [CrossRef] [Google Scholar]
  21. J.-G. Guo, Y.-P. Zhao, The size-dependent bending elastic properties of nanobeams with surface effects, Nanotechnology 18 (2007) 295701–6 [CrossRef] [Google Scholar]
  22. X.F. Li, B.L. Wang, K.Y. Lee, Size effects of the bending stiffness of nanowires, J. Appl. Phys. 105 (2009) 074306–6 [CrossRef] [Google Scholar]
  23. M.E. Gurtin, A.I. Murdoch, A continuum theory of elastic material surfaces, Arch. Rational. Mech. Anal. 57 (1975) 291–323 [Google Scholar]
  24. R. Dingreville, J. Qu, M. Cherkaoui, Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films, J. Mech. Phys. Solids 53 (2005) 1827–1854 [CrossRef] [MathSciNet] [Google Scholar]
  25. H.L. Duan, J. Wang, Z.P. Huang, B.L. Karihaloo, Eshelby formalism for nano-inhomogeneities, Proc. R. Soc. A 461 (2005) 3335–3353 [Google Scholar]
  26. H.L. Duan, J. Wang, Z.P. Huang, B.L. Karihaloo, Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress, J. Mech. Phys. Solids 53 (2005) 1574–1596 [CrossRef] [Google Scholar]
  27. H.L. Duan, X. Yi, Z.P. Huang, J. Wang, A unified scheme for prediction of effective moduli of multiphase composites with interface effects, Part I : Theoretical framework, Mech. Mater. 39 (2007) 81–93 [CrossRef] [Google Scholar]
  28. P. Sharma, S. Ganti, N. Bhate, Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities, Appl. Phys. Lett. 82 (2003) 535–537 [CrossRef] [Google Scholar]
  29. P. Sharma, S. Ganti, Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies, ASME J. Appl. Mech. 71 (2004) 663–71 [Google Scholar]
  30. J. Yvonnet, H.L. Quang, Q.-C. He, An XFEM/level set approach to modelling surface/interface effects and to computing the size-dependent effective properties of nanocomposites, Comput. Mech. 42 (2008) 119–131 [CrossRef] [MathSciNet] [Google Scholar]
  31. J. Yvonnet, A. Mitrushchenkov, G. Chambaud, Q.-C. He, Finite element model of ionic nanowires with size-dependent mechanical properties determined by ab initio calculations, Comput. Methods. Appl. Mech. Eng. 200 (2011) 614–625 [CrossRef] [Google Scholar]
  32. G.F. Wang, X.Q. Feng, Effects of surface elasticity and residual surface tension on the natural frequency of microbeams, Appl. Phys. Lett. 90 (2007) 231904 [CrossRef] [Google Scholar]
  33. G.F. Wang, X.Q. Feng, Effects of surface stresses on contact problems at nanoscale, J. Appl. Phys. 101 (2007) 013510–6 [CrossRef] [Google Scholar]
  34. G.F. Wang, X.Q. Feng, Surface effects on buckling of nanowires under uniaxial compression, Appl. Phys. Lett. 94 (2009) 141913 [CrossRef] [Google Scholar]
  35. G.F. Wang, X.Q. Feng, Timoshenko beam model for buckling and vibration of nanowires with surface effects, J. Phys. 42 (2009) 155411 [Google Scholar]
  36. J. He, C.M. Lilley, Surface effect on the elastic behavior of static bending nanowires, Nano Lett. 8 (2008) 1798–1802 [CrossRef] [PubMed] [Google Scholar]
  37. L.Y. Jiang, Z. Yan, Timoshenko beam model for static bending of nanowires with surface effects, Physica E : Low-dimens. Syst. Nanostruct. 42 (2010) 2274 [CrossRef] [Google Scholar]
  38. M.C.P. Wang, B.D. Gates, Directed assembly of nanowires, Mater. Today 12 (2009) 34–43 [CrossRef] [Google Scholar]
  39. W. Lu, C.M. Lieber, Nanoelectronics from the bottom up, Nat. Mater. 6 (2007) 541–850 [CrossRef] [PubMed] [Google Scholar]
  40. C.Q. Ru, Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium, J. Mech. Phys. Solids 49 (2001) 1265–79 [CrossRef] [Google Scholar]
  41. S.C. Pradhan, A. Kumar, Vibration analysis of orthotropic graphene sheets embedded in Pasternak elastic medium using nonlocal elasticity theory and differential quadrature method, Comput. Mater. Sci. 50 (2010) 239–245 [CrossRef] [Google Scholar]
  42. M. Mohammadimehr, A.R. Saidi, A. Ghorbanpour Arani, A. Arefmanesh, Q. Han, Torsional buckling of a DWCNT embedded on Winkler and Pasternak foundations using nonlocal theory, J. Mech. Sci. Technol. 24 (2010) 1289–1299 [CrossRef] [Google Scholar]
  43. R.F. Scott, Foundation Analysis, Prentice-Hall : Englewood Cliffs N.J, 1981 [Google Scholar]
  44. A.C. Ugural, S.K. Fenster, Advanced strength and applied elasticity, Printice Hall : USA, 2003 [Google Scholar]
  45. P.L. Pasternak, On a new method of analysis of an elastic foundation by means of two foundation constants, Goz Izd Lip Po Strait i Arkh : Moscow (in Russian), 1954 [Google Scholar]
  46. R.C. Cammarata, Surface and interface stress effects in thin films, Prog. Surf. Sci. 46 (1994) 1–38 [CrossRef] [Google Scholar]
  47. J.R. Hutchinson, Shear coefficients for timoshenko beam theory, J. Appl. Mech. Trans : ASME 68 (2001) 87–92 [Google Scholar]
  48. A. Ghani razaqpur, K.R. Shah, Exact analysis of beams on two-parameter elastic foundations, Int. J. Solids Struct. 27 (1991) 435–54 [CrossRef] [Google Scholar]
  49. K.M. Liew, X.Q. He, S. Kitipornchai, Predicting nanovibration of multi-layered graphene sheets embedded in an elastic matrix, Acta. Mater. 54 (2006) 4229–4236 [CrossRef] [Google Scholar]
  50. T. Murmu, S.C. Pradhan, Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM, Physica E : Low-dimens. Syst. Nanostruct. 41 (2009) 1232–1239 [CrossRef] [Google Scholar]
  51. X.F. Li, G.T. Fei, W.F. Zhou, L.D. Zhang, A convenient method to determine the bulk modulus of nanowires and its temperature dependence based on X-ray diffraction measurement, Solid. State. Commun. 150 (2010) 1117–1119 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.