Open Access
Issue
Mechanics & Industry
Volume 13, Number 3, 2012
Page(s) 185 - 195
DOI https://doi.org/10.1051/meca/2012011
Published online 01 August 2012
  1. E.M. Kerwin, Damping of flexural waves by a constrained viscoelastic layer, J. Acoust. Soc. Am. 31 (1959) 952–962 [CrossRef] [Google Scholar]
  2. E.E. Ungar, E.M. Kerwin, E.M Loss factors of viscoelastic systems in terms of energy concepts, J. Acoust. Soc. Am. 34 (1959) 954–957 [CrossRef] [Google Scholar]
  3. R.A. Di Taranto, W. Blasingame, Composite damping of vibrating sandwich beams, J. Appl. Mech. Trans. ASME (1967) 633–638 [Google Scholar]
  4. D.J. Mead, S. Markus, Damping sandwich beam with arbitrary boundary conditions, the forced vibration of three layer damped sandwich beam with arbitrary boundary conditions, J. Sound Vib. 10 (1967) 163–175 [CrossRef] [Google Scholar]
  5. F. Njilie Adamou, P. Muller, M.T. Gautherin, Evaluation de l’amortissement d’une plaque sandwich, acier-polymère-acier, Mécanique & Industries 4 (2003) 77–81 [CrossRef] [Google Scholar]
  6. H. Yuh-Chun, H. Shyh-Chin, The frequency response and damping effect of three-layer thin shell with viscoelastic core, Comput. Struct. 76 (2000) 577–591 [CrossRef] [Google Scholar]
  7. P. Mahmoodi, Structural dampers, J. Structural Division–ASCE 95 (1972) 1961–1967 [Google Scholar]
  8. D.M. Bergamon, R.D. Hanson, Characteristics of viscoelastic damping devices, Proceedings of the ATC Seminar and Workshop on Base Isolation and Passive Energy Dissipation, Applied Technology Council, Redwood City, 1986 [Google Scholar]
  9. H. Gacem, Y. Chevalier, J.L. Dion, M. Soula, B. Rezgui, Non linear dynamic behaviour of a preloaded thin sandwich plate incorporating visco-hyperelastic layers, J. Sound Vib. (2008) 1–19 [Google Scholar]
  10. D. Gay, Matériaux Composites, Hermes, 1987 [Google Scholar]
  11. J.N. Reddy, Mechanics of laminated composite plates, CRC press, Boca Raton, FL, 1997 [Google Scholar]
  12. J. Salençon, Viscoélasticité, Presses de l’école nationale des Ponts et Chaussées, 1983 [Google Scholar]
  13. J. Mandel, Sur les corps viscoélastiques linéaires à comportement linéaire, C. R. Acad. Sci. 241 (1955) 1910–1912 [Google Scholar]
  14. M. Rivlin, A theory of large elastic deformation, J. Appl. Phys. 11 (1940) 582–592 [CrossRef] [Google Scholar]
  15. T. Beda, Y. Chevalier, Sur le comportement statique et dynamique des élastomères en grandes déformations, Mécanique industrielle et Matériaux 50-N (1997) 228–231 [Google Scholar]
  16. A.D. Nashif, D.I. Jones, J.P. Henderson, Vibration damping, John Wiley – Intersciences, New York, 1985 [Google Scholar]
  17. J.D. Ferry, Viscoelastic properties of polymers, John Wiley & Sons, New York, 1961 [Google Scholar]
  18. L.C. Botten, A.A. Asatryan, N.A. Nicorovici, R.C. McPhedran, C.C. Martijn de Sterke, Generalisation of the transfer matrix formulation of the theory of electron and photon conductance, Elsevier B.V, 2006 [Google Scholar]
  19. Y. Chevalier, J.T. Vinh, (ed), Mechanics of viscoelastic materials and wave dispersion, ISTE Ltd, London (U.K) and John Wiley & Sons, Hoboken (NJ- USA), 2010 [Google Scholar]
  20. K. Miller, Testing elastomers for finite element analysis, Axel Products, 2004 [Google Scholar]
  21. G.R. Bhashyam, Ansys mechanical : A powerful nonlinear simulation tool, A SYS, INC, 2003 [Google Scholar]
  22. Tzikang, Determining a Prony series for a viscoelastic material from time varying strain data, NASA Langley Technical Report Server, 2000 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.