Open Access
Issue
Mechanics & Industry
Volume 13, Number 3, 2012
Page(s) 175 - 184
DOI https://doi.org/10.1051/meca/2012013
Published online 16 November 2012
  1. S. Goyal, S. Upasani, D.M. Patel, Improving impact tolerance of portable electric products : Case study of cellular phones, Exp. Mech. 39 (1999) 43–52 [CrossRef] [Google Scholar]
  2. S. Goyal, Methods for realistic drop-testing, Int. J. Microcircuits Electron. Packag. 23 (2000) 45–52 [Google Scholar]
  3. S.P. Gorman, In-package methods improve shock, vibration testing, Packag. Technol. Eng. 6 (1997) 26–29 [Google Scholar]
  4. Y. Masso-Moreu, N.J. Mills, Impact compression of polystyrene foam pyramids, Int. J. Impact Eng. 28 (2003) 653–676 [CrossRef] [Google Scholar]
  5. K.H. Low, Drop-impact cushioning effect of electronic products formed by plates, Adv. Eng. Softw. 34 (2003) 31–50 [CrossRef] [Google Scholar]
  6. T.L. Liu, L. Rutledge, Y. Zhou, Simulation, analysis critical to safe product distribution, Packag. Technol. Eng. 8 (1999) 25–27 [Google Scholar]
  7. N.J. Mills, Y. Masso-Moreu, Finite element analysis (FEA) applied to polyethylene foam cushions in package drop tests, Packag. Technol. Sci. 18 (2005) 29–38 [CrossRef] [Google Scholar]
  8. E.K. Hahn, A.D. Rudo, B.S. Westerlind, L.A. Carlsson, Compressive strength of edge-loaded corrugated board panels, Exp. Mech. 32 (1992) 259–265 [CrossRef] [Google Scholar]
  9. M.H. Lee, J.M. Park, Flexural stiffness of selected corrugated structures, Packag. Technol. Sci. 17 (2004) 275–286 [CrossRef] [Google Scholar]
  10. T.J. Urbanik, Effect of corrugated flute shape on fiberboard edgewise crush strength and bending stiffness, J Pulp Pap. Sci. 27 (2001) 330–335 [Google Scholar]
  11. M.E. Biancolini, C. Brutti, Numerical and experimental investigation of the strength of corrugated board packages, Packag. Technol. Sci. 16 (2003) 47–60 [CrossRef] [Google Scholar]
  12. N. Talbi, A. Batti, R. Ayad, Y.Q. Guo, An analytical homogenization model for finite element modeling of corrugated cardboard, Compos. Struct. 88 (2009) 280–289 [CrossRef] [Google Scholar]
  13. H.A. Rami, J. Choi, B.S. Wei, R. Popil, M. Schaepe, Refined nonlinear finite element models for corrugated fiberboards, Compos. Struct. 87 (2009) 321–333 [CrossRef] [Google Scholar]
  14. G.A. Baum, D.C. Brennan, C.C. Habeger, Orthotropic elastic constants of papers, Tappi J. 64 (1981) 97–101 [Google Scholar]
  15. Abaqus user subroutine reference manual v6.7. Simulia, 2007 [Google Scholar]
  16. B. Abbès, Y.Q. Guo, Analytic homogenization for torsion of orthotropic sandwich plates : Application to corrugated cardboard, Compos. Struct. 92 (2010) 699–706 [CrossRef] [Google Scholar]
  17. T. Nordstrand, L.A. Carlsson, H.G. Allen, Transverse shear stiffness of structural core sandwich, Compos. Struct. 27 (1994) 317–329 [CrossRef] [Google Scholar]
  18. L.J. Gibson, M.F. Ashby, The mechanics of three-dimensional cellular materials, P. Roy. Soc. A Mat. 382 (1982) 43–59 [NASA ADS] [CrossRef] [Google Scholar]
  19. Q.M. Li, R.A.W. Mines, Strain measures for rigid crushable foam in uniaxial compression, Strain 38 (2002) 132–140 [CrossRef] [Google Scholar]
  20. G.C. Machado, M.K. Alves, R. Rossi, C.R.A. Silva, Numerical modelling of large strain behaviour of polymeric crushable foams, Appl. Math. Model. 35 (2011) 1271–1281 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.