Open Access
Issue
Mechanics & Industry
Volume 13, Number 3, 2012
Page(s) 205 - 217
DOI https://doi.org/10.1051/meca/2012016
Published online 16 November 2012
  1. M. Ryll, T.N. Papastathis, S. Ratchev, Towards an intelligent fixturing system with rapid reconfiguration and part positioning, J. Mater. Proc. Technol. 201 (2008) 198–203 10th International Conference on Advances in Materials and Processing Technologies – AMPT 2007 [CrossRef] [Google Scholar]
  2. X. Kang, Q. Peng, Computer-Aided fixture planning : A review, inASME 2008 International Design Engineering Technical Conference, (New York), 2008 [Google Scholar]
  3. J. Cecil, Computer-Aided fixture design – a review and future trends, Int. J. Adv. Manuf. Technol. 18 (2001) 790–793 [CrossRef] [Google Scholar]
  4. Y. Kang, Y. Rong, J.A. Yang, Geometric and kinetic model based Computer-Aided fixture design verification, J. Comp. Inf. Sci. Eng. 3 (2003) 187–199 [Google Scholar]
  5. H. Wang, Y.K. Rong, H. Li, P. Shaun, Computer aided fixture design : Recent research and trends, Computer-Aided Design 42 (2010) 1085–1094 [CrossRef] [Google Scholar]
  6. I. Boyle, Y. Rong, D. Brown, A review and analysis of current computer-aided fixture design approaches, Robotics and Computer-Integrated Manufacturing 27 (2011) 1–12 [CrossRef] [Google Scholar]
  7. S. Somashekar R., Fixturing features selection in feature-based systems, Computers in Industry 48 (2002) 99–108 [CrossRef] [Google Scholar]
  8. R.J. Menassa, W.R. Devries, Optimization methods applied to selecting support positions in fixture design, J. Eng. Ind. 113 (1991) 412–418 [Google Scholar]
  9. U. Roy, J. Liao, Fixturing analysis for stability consideration in an automated fixture design system, J. Manuf. Sci. Eng. 124 (2002) 98–104 [CrossRef] [Google Scholar]
  10. B. Li, S.N. Melkote, Improved workpiece location accuracy through fixture layout optimization, Int. J. Machine Tools Manuf. 39 (1999) 871–883 [CrossRef] [Google Scholar]
  11. T. Aoyama, Y. Kakinuma, Development of fixture devices for thin and compliant workpieces, CIRP Annals – Manufacturing Technology 54 (2005) 325–328 [CrossRef] [Google Scholar]
  12. A. Clement, P. Bourdet, A study of optimal-criteria identification based on the small-displacement screw model, CIRP Annals – Manufacturing Technology 37 (1988) 503–506 [Google Scholar]
  13. P. Bourdet, Logiciels des machines à mesurer tridimensionnelles,Techniques de l’ingénieur, Mesures et contrôle, no. R1316, p. R1316-1, 1999 [Google Scholar]
  14. F. Villeneuve, O. Legoff, Y. Landon, Tolerancing for manufacturing : a three-dimensional model, Int. J. Prod. Res. 39 (2001) 1625–1648 [Google Scholar]
  15. J. Asante, A small displacement torsor model for tolerance analysis in a workpiece-fixture assembly, Proc. Institution of Mechanical Engineers, Part B : J. Eng. Manuf. 223 (2009) 1005–1020 [CrossRef] [Google Scholar]
  16. B. Li, S.N. Melkote, S.Y. Liang, Analysis of reactions and minimum clamping force for machining fixtures with large contact areas, Int. J. Adv. Manuf. Technol. 16 (2000) 79–84 [CrossRef] [Google Scholar]
  17. B. Li, S.N. Melkote, Fixture clamping force optimisation and its impact on workpiece location accuracy, Int. J. Adv. Manuf. Technol. 17 (2001) 104–113 [Google Scholar]
  18. H. Deng, S.N. Melkote, Determination of minimum clamping forces for dynamically stable fixturing, Int. J. Machine Tools Manuf. 46 (2006) 847–857 [Google Scholar]
  19. S. Jayaram, B. El-Khasawneh, D. Beutel, M. Merchant, A fast analytical method to compute optimum stiffness of fixturing locators, CIRP Annals – Manufacturing Technology 49 (2000) 317–320 [CrossRef] [Google Scholar]
  20. A. Raghu, S. Melkote, Modeling of workpiece location error due to fixture geometric error and fixture-workpiece compliance, J. Manuf. Sci. Eng. 127 (2005) 75–83 [CrossRef] [Google Scholar]
  21. A. Raghu, S.N. Melkote, Analysis of the effects of fixture clamping sequence on part location errors, Int. J. Machine Tools Manuf. 44 (2004) 373–382 [CrossRef] [Google Scholar]
  22. Y. Lin, Y. Shen, A Generic Kinematic Error Model for Machine Tools, Citeseer, 2000 [Google Scholar]
  23. B.K. Jha, A. Kumar, Analysis of geometric errors associated with five-axis machining centre in improving the quality of cam profile,Int. J. Machine Tools Manuf. 43 (2003) 629–636 [CrossRef] [Google Scholar]
  24. X. Wan, C. Xiong, C. Zhao, X. Wang, A unified framework of error evaluation and adjustment in machining, Int. J. Machine Tools Manuf. 48 (2008) 1198–1210 [CrossRef] [Google Scholar]
  25. P. Martin, J. Dantan, A. D’Acunto, Virtual manufacturing : prediction of work piece geometric quality by considering machine and set-up accuracy, Int. J. Machine Tools Manuf. 24 (2011) 610–626 [Google Scholar]
  26. S. Zhu, G. Ding, S. Qin, J. Lei, L. Zhuang, K. Yan, Integrated geometric error modeling, identification and compensation of CNC machine tools, Int. J. Machine Tools Manuf. 52 (2012) 24–29 [Google Scholar]
  27. R. Ramesh, M.A. Mannan, A.N. Poo, Error compensation in machine tools – a review : Part I : geometric, cutting-force induced and fixture-dependent errors, Int. J. Machine Tools Manuf. 40 (2000) 1235–1256 [Google Scholar]
  28. C. Raksiri, M. Parnichkun, Geometric and force errors compensation in a 3-axis CNC milling machine, Int. J. Machine Tools Manuf. 44 (2004) 1283–1291 [CrossRef] [Google Scholar]
  29. zimmer, zimmer hip prosthesis, CPT 12/14 cemented stems, http://www.zimmer.co.uk/web/enUS/pdf/product˙brochures/CPT˙12˙14˙Hip˙System˙97-8114-01˙rev˙1.pdf, 2011 [Google Scholar]
  30. O. Rosenberg, V. Vozny, C. Sokhan, J. Gawlik, A.G. Mamalis, D.J. Kim, Trends and developments in the manufacturing of hip joints : an overview, Int. J. Adv. Manuf. Technol. 27 (2006) 537–542 [Google Scholar]
  31. M. Dietrich, K.R. Skalski, Designing and manufacturing turing of customized human bone endoprostheses, in The Eleventh World Congress in Mechanism and Machine Science, 2004, pp. 92–95 [Google Scholar]
  32. G. Halevi, R. Weill, Principles of Process Planning : a Logical approach, Chapman and Hall, London, 1995 [Google Scholar]
  33. M. Lalanne, P. Berthier, J. Der Hagopian, Mécanique des vibrations linéaires (avec exercices corrigés et programmes de calcul), Paris : Masson, 1986 [Google Scholar]
  34. G.C. Onwubolu, S. Kumar, Response surface methodology-based approach to CNC drilling operations, J. Mater. Proc. Technol. 171 (2006) 41–47 [CrossRef] [Google Scholar]
  35. S.G. Kelly, Schaum’s outline of Theory and Problems of Mechanical Vibrations, McGraw Hill, 1996 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.