Giens 2011
Open Access
Mechanics & Industry
Volume 13, Number 6, 2012
Giens 2011
Page(s) 361 - 371
Published online 22 November 2012
  1. B.A. Mae, The revolution in medical imaging rosen Pub. Group, New York, NY (USA), 2003 [Google Scholar]
  2. Industrial CT scanning,, accessed in February, 2012 [Google Scholar]
  3. J. Baruchel, J.-Y. Buffière, E. Maire, P. Merle, G. Peix, X-Ray Tomography in Material Sciences, Hermes Science, Paris France, 2000 [Google Scholar]
  4. B.K. Bay, T.S. Smith, D.P. Fyhrie, M. Saad, Digital volume correlation : three-dimensional strain mapping using X-ray tomography, Exp. Mech. 39 (1999) 217–226 [CrossRef] [Google Scholar]
  5. T.S. Smith, B.K. Bay, M.M. Rashid, Digital volume correlation including rotational degrees of freedom during minimization, Exp. Mech. 42 (2002) 272–278 [CrossRef] [Google Scholar]
  6. M. Bornert, J.-M. Chaix, P. Doumalin, J.-C. Dupré, T. Fournel, D. Jeulin, E. Maire, M. Moreaud, H. Moulinec, Mesure tridimensionnelle de champs cinématiques par imagerie volumique pour l’analyse des matériaux et des structures, Inst. Mes. Métrol. 4 (2004) 43–88 [Google Scholar]
  7. E. Verhulp, B. van Rietbergen, R. Huiskes, A three-dimensional digital image correlation technique for strain measurements in microstructures, J. Biomech. 37 (2004) 1313–1320 [CrossRef] [PubMed] [Google Scholar]
  8. A. Germaneau, P. Doumalin, J.C. Dupré, Full 3D measurement of strain field by scattered light for analysis of structures, Exp. Mech. 47 (2007) 523–532 [CrossRef] [Google Scholar]
  9. N. Lenoir, M. Bornert, J. Desrues, P. Bésuelle, G. Viggiani, Volumetric digital image correlation applied to X-ray microtomography images from triaxial compression tests on argillaceous rock, Strain 43 (2007) 193–205 [CrossRef] [Google Scholar]
  10. F. Forsberg, R. Mooser, M. Arnold, E. Hack, P. Wyss, 3D micro-scale deformations of wood in bending : Synchrotron radiation CT data analyzed with digital volume correlation, J. Struct. Biol. 164 (2008) 255–262 [CrossRef] [PubMed] [Google Scholar]
  11. S. Roux, F. Hild, P. Viot, D. Bernard, Three dimensional image correlation from X-Ray computed tomography of solid foam, Comp. Part A 39 (2008) 1253–1265 [CrossRef] [Google Scholar]
  12. F. Hild, E. Maire, S. Roux, J.-F. Witz, Three dimensional analysis of a compression test on stone wool, Acta Mat. 57 (2009) 3310–3320 [CrossRef] [Google Scholar]
  13. N. Limodin, J. Réthoré, J.-Y. Buffière, A. Gravouil, F. Hild, S. Roux, Crack closure and stress intensity factor measurements in nodular graphite cast iron using 3D correlation of laboratory X ray microtomography images, Acta Mat. 57 (2009) 4090–4101 [CrossRef] [Google Scholar]
  14. N. Limodin, J. Réthoré, J.-Y. Buffière, F. Hild, S. Roux, W. Ludwig, J. Rannou, A. Gravouil, Influence of closure on the 3D propagation of fatigue cracks in a nodular cast iron investigated by X-ray tomography and 3D Volume Correlation, Acta Mat. 58 (2010) 2957–2967 [Google Scholar]
  15. J. Rannou, N. Limodin, J. Réthoré, A. Gravouil, W. Ludwig, M.-C. Baïetto-Dubourg, J.-Y. Buffière, A. Combescure, F. Hild, S. Roux, Three dimensional experimental and numerical multiscale analysis of a fatigue crack, Comp. Meth. Appl. Mech. Eng. 199 (2010) 1307–1325 [Google Scholar]
  16. ISO/IEC guide 99-12 :2007, International Vocabulary of Metrology – Basic and General Concepts and Associated Terms, VIM, International Organization for Standardization, Geneva (Switzerland), 2007 [Google Scholar]
  17. S. Bergonnier, F. Hild, S. Roux, Digital image correlation used for mechanical tests on crimped glass wool samples, J. Strain Analysis 40 (2005) 185–197 [CrossRef] [Google Scholar]
  18. G. Besnard, F. Hild, S. Roux, Finite-element displacement fields analysis from digital images : Application to Portevin-Le Châtelier bands, Exp. Mech. 46 (2006) 789–803 [CrossRef] [Google Scholar]
  19. N. Limodin, J. Réthoré, J. Adrien, J.-Y. Buffière, F. Hild, S. Roux, Analysis and artifact correction for volume correlation measurements using tomographic images from a laboratory X-ray source, Exp. Mech. 51 (2011) 959–970 [CrossRef] [Google Scholar]
  20. W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Z. Phys. 43 (1927) 172–198 [Google Scholar]
  21. W. Heisenberg, Physikalische Prinzipien der Quantentheorie, Hirzel, Leipzig (Germany), 1930 [Google Scholar]
  22. D. Gabor, Theory of communication, J. Ins. Electl. Eng. 93 (1946) 429–457 [Google Scholar]
  23. S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, San Diego (California), USA, 1998 [Google Scholar]
  24. B.K.P. Horn, B.G. Schunck, Determining optical flow, Artificial Intelligence 17 (1981) 185–203 [Google Scholar]
  25. A. Mitiche, P. Bouthemy, Computation and analysis of image motion : A synopsis of current problems and methods, Int. J. Comp. Vision. 19 (1996) 29–55 [CrossRef] [Google Scholar]
  26. M. Black, Robust Incremental Optical Flow, Ph.D. dissertation, Yale University, 1992 [Google Scholar]
  27. J.-M. Odobez, P. Bouthemy, Robust multiresolution estimation of parametric motion models, J. Visual Comm. Image Repres. 6 (1995) 348–365 [Google Scholar]
  28. H. Leclerc, J.-N. Périé, S. Roux, F. Hild, Voxel-scale digital volume correlation, Exp. Mech. 51 (2011) 479–490 [CrossRef] [Google Scholar]
  29. T. Schiwietz, R. Westermann, GPU-PIV, edited by B. Girod, M.A. Magnor, H.-P. Seidel, in : Proceedings Vision, Modeling and Visualization Conference, Aka GmnH, 2004, pp. 151–158 [Google Scholar]
  30. P. Kondratieva, J. Georgii, R. Westermann, H. Petermeier, W. Kowalczyk, A. Delgado, A real-time model-based approach for the reconstruction fluid flows induced by microorganisms, Exp. Fluids 45 (2008) 203–222 [CrossRef] [Google Scholar]
  31. F. Champagnat, A. Plyer, G.L. Besnerais, Y.L. Sant, How to calculate dense PIV vector fields at video rate, Proceedings 8th International Symposium of Particle Image Velocimetry, 2009, PIV09-0091 [Google Scholar]
  32. S. Tarashima, M. Tange, S. Someya, K. Okamoto, GPU accelerated direct cross-correlation PIV with window deformation, Proc. 15th Int Symp on Applications of Laser Techniques to Fluid Mechanics, 2010, p. 8 [Google Scholar]
  33. R.A. Asmara, M. Hariadi, Accelerating Phase Based Motion Estimation with Hierarchical Search Technique Using Parallel Threading in Graphical Processing Unit (GPU), Int. J. Comput. Sci. Network Security 9 (2009) 140–146 [Google Scholar]
  34. H. Leclerc, J.-N. Périé, S. Roux, F. Hild, Integrated digital image correlation for the identification of mechanical properties, in : MIRAGE 2009, A. Gagalowicz, W. Philips, eds., (Springer, Berlin, 2009), LNCS 5496 161–171 [Google Scholar]
  35. J. Marzat, Y. Dumortier, A. Ducrot, Real-Time Dense and Accurate Parallel Optical Flow using CUDA, Proc. WSCG 2009, pp. 105–111 [Google Scholar]
  36. D. Mitzel, T. Pock, T. Schoenemann, D. Cremers, Video Super Resolution using Duality Based TV-L1 Optical Flow, in : Lecture Notes in Computer Science, 5748 (2009) 432–441 [CrossRef] [Google Scholar]
  37. K.Ø. Noe, B.D. De Senneville, U.V. Elstrøm, K. Tanderup, T.S. Sørensen, Acceleration and validation of optical flow based deformable registration for image-guided radiotherapy, Acta Oncologica 47 (2008) 1286–1293 [CrossRef] [PubMed] [Google Scholar]
  38. P.J. Lu, H. Oki, C.A. Frey, G.E. Chamitoff, L. Chiao, E.M. Fincke, C.M. Foale, S.H. Magnus, W.S. McArthur Jr., D.M. Tani, P.A. Whitson, J.N. Williams, W.V. Meyer, R.J. Sicker, B.J. Au, M. Christiansen, A.B. Schofield, D.A. Weitz, Orders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space Station, J. Real-Time Image Proc. 5 (2010) 179–193 [CrossRef] [Google Scholar]
  39. D. Ruijters, B.M. Ter Haar Romeny, P. Suetens, GPU-accelerated elastic 3D image registration for intra-surgical applications, Comput. Meth. Programs Biomed. 103 (2011) 104–112 [CrossRef] [Google Scholar]
  40. J.A. Shackleford, N. Kandasamy, G.C. Sharp, On developing B-spline registration algorithms for multi-core processors, Phys. Med. Biol. 55 (2010) 6329–6351 [CrossRef] [PubMed] [Google Scholar]
  41. NVIDIA CUDA C Programming Guide, NVIDIA Corporation, ( /doc/CUDA_C_Programming_Guide.pdf, accessed in December 2011) [Google Scholar]
  42. Y. Saad, H.A. van der Vorst, Iterative Solution of Linear Systems in the 20th Century, J. Comput. Appl. Math. 123 (2000) 1–33 [CrossRef] [Google Scholar]
  43. D. Claire, F. Hild, S. Roux, A finite element formulation to identify damage fields : The equilibrium gap method, Int. J. Num. Meth. Eng. 61 (2004) 189–208 [CrossRef] [Google Scholar]
  44. J. Réthoré, G. Besnard, G. Vivier, F. Hild, S. Roux, Experimental investigation of localized phenomena using Digital Image Correlation, Phil. Mag. 88 (2008) 3339–3355 [Google Scholar]
  45. F. Hild, S. Roux, Comparison of local and global approaches to digital image correlation, Exp. Mech. 2012 [in press, DOI 10.1007/s11340-012-9603-7] [Google Scholar]
  46. J. Réthoré, N. Limodin, J.-Y. Buffière, F. Hild, W. Ludwig, S. Roux, Digital volume correlation analyses of synchrotron tomographic images, J. Strain Analysis 46 (2011) 683–695 [CrossRef] [Google Scholar]
  47. F. Hild, A. Fanget, J. Adrien, E. Maire, S. Roux, Three dimensional analysis of a tensile test on a propellant with digital volume correlation, Arch. Mech. 63 (2011) 1–20 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.