Giens 2011
Open Access
Issue
Mechanics & Industry
Volume 13, Number 6, 2012
Giens 2011
Page(s) 373 - 380
DOI https://doi.org/10.1051/meca/2012023
Published online 22 November 2012
  1. H.M. Frost, C.R. Straatsma, Bone remodeling dynamics, Plast. Reconstr. Surg. 33 (1964) 196–206 [CrossRef] [Google Scholar]
  2. E. Budyn, T. Hoc, J. Jonvaux, Fracture strength assessment and aging signs detection in human cortical bone using an X-FEM multiple scale approach, Comp. Mech. 42 (2008) 579–591 [CrossRef] [Google Scholar]
  3. C.H. Turner, Y. Takano, T.Y. Tsui, G.M. Pharr, The elastic properties of trabecular and cortical bone tissues are similar : results from two microscopic measurement techniques, J. Biomech. 32 (1999) 437–441 [CrossRef] [PubMed] [Google Scholar]
  4. P.K. Zysset, X.E. Guo, C.E. Hoffler, K.E. Moore, S.A. Goldstein, Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur, J. Biomech. 32 (1999) 1005–1012 [CrossRef] [PubMed] [Google Scholar]
  5. P.K. Zysset, X.E. Guo, C.E. Hoffler, K.E. Moore, S.A. Goldstein, Mechanical properties of human trabecular bone lamellae quantified by nanoindentation, Technol. Health Care 6 (1998) 429–432 [CrossRef] [PubMed] [Google Scholar]
  6. J.Y. Rho, T.Y. Tsui, G.M. Pharr, Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation, Biomaterials 18 (1997) 1325–1330 [CrossRef] [PubMed] [Google Scholar]
  7. C.C. Ko, W.H. Douglas, Y.S. Cheng, Intrinsic mechanical competence of cortical and trabecular bone measured by nanoindentation and microindentation probes edited by R.M. Hochmuth, N.A. Langrana, M.S. Hefzy, in : Proc. ASME Bioengineering Conference BED-Vol. 29, USA, 1995, pp. 415–416 [Google Scholar]
  8. J.K. Weaver, The microscopic hardness of bone, J. Bone Joint Surg. 48 (1966) 273–288 [PubMed] [Google Scholar]
  9. K. Choi, J.L. Kuhn, M.J. Ciarelli, S.A. Goldstein, The elastic moduli of human subchondral trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus, J. Biomech. 23 (1990) 1103–1113 [CrossRef] [PubMed] [Google Scholar]
  10. J.L. Kuhn, S.A. Goldstein, K. Choi, M. London, L.A. Feldkamp, L.S. Matthews, Comparison of the trabecular and cortical tissue moduli from human iliac crests, J. Orthop. Res. 7 (1989) 876–884 [CrossRef] [PubMed] [Google Scholar]
  11. F. Bini, A. Marinozzi, F. Marinozzi, F. Patanè, Microtensile measurements of single trabeculae stiffness in human femur, J. Biomech. 35 (2002) 1515–1519 [CrossRef] [PubMed] [Google Scholar]
  12. J.C. Ryan, J.L. Williams, Tensile testing of rodlike trabeculae excised from bovine femoral bone, J. Biomech. 22 (1989) 351–355 [CrossRef] [PubMed] [Google Scholar]
  13. J.Y. Rho, R.B. Ashman, C.H. Turner, Young’s modulus of trabecular and cortical bone material : ultrasonic and microtensile measurement, J. Biomech. 26 (1993) 111–119 [CrossRef] [PubMed] [Google Scholar]
  14. J.L. Williams, W.J.H. Johnson, Elastic constants of composites formed from PMMA bone cement and anisotropic bovine cancellous bone, J. Biomech. 22 (1989) 673–682 [CrossRef] [PubMed] [Google Scholar]
  15. R.B. Ashman, J.Y. Rho, Elastic modulus of trabecular bone material, J. Biomech. 21 (1988) 177–181 [CrossRef] [PubMed] [Google Scholar]
  16. B. Helgason, E. Perilli, E. Schileo, F. Taddei, S. Brynjolfsson, M. Viceconti, Mathematical relationships between bone density and mechanical properties : A literature review, Clin. Biomech. 23 (2008) 135–146 [CrossRef] [Google Scholar]
  17. G. Guidoni, M. Swain, I. Jaeger, Nanoindentation of wet and dry compact bone : Influence of environment and indenter tip geometry on the indentation modulus, Philosophical magazine 9 (2010) 553–565 [CrossRef] [Google Scholar]
  18. S.C. Cowin, Bone mechanics handbook, 2nd edition, Informa Healthcare, 2001 [Google Scholar]
  19. Y. Chevalier, D. Pahr, H. Allmer, M. Charlebois, P. Zysset, Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation, J. Biomech. 40 (2007) 3333–3340 [CrossRef] [PubMed] [Google Scholar]
  20. P. Mc Donnell, N. Harrison, M.A.K. Liebschner, P.E. Mc Hugh, Simulation of vertebral trabecular bone loss using voxel finite-element analysis, J. Biomech. 42 (2009) 2789–2796 [CrossRef] [PubMed] [Google Scholar]
  21. H. Follet, F. Peyrin, E. Vidal-Salle, A. Bonnassie, C. Rumelhart, P.J. Meunier, Intrinsic mechanical properties of trabecular calcaneus determined by finite-element models using 3D synchrotron microtomography, J. Biomech. 40 (2006) 2174–2183 [CrossRef] [PubMed] [Google Scholar]
  22. S.V. Jaecques, H. Van Oosterwyck, L. Muraru, T. Van Cleynenbreugel, E. De Smet, M. Wevers, I. Naert, J. Vander Sloten, Individualised, micro CT-based finite element modeling as a tool for biomechanical analysis related to tissue engineering of bone, Biomaterials 25 (2004) 1683–1696 [CrossRef] [PubMed] [Google Scholar]
  23. G.L. Niebur, M.J. Feldstein, J.C. Yuen, T.J. Chen, T.M. Keaveny, High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone, J. Biomech. 33 (2001) 1575–1583 [CrossRef] [Google Scholar]
  24. A.J.C. Ladd, J.H. Kinney, D.L. Haupt, S.A. Goldstein, Finite-element modeling of trabecular bone : comparison with mechanical testing and determination of tissue modulus, J. Orthop. Res. 16 (1998) 622–628 [CrossRef] [PubMed] [Google Scholar]
  25. F.J. Hou, S.M. Lang, S.J. Hoshaw, D.A. Riemann, D.P. Hyhrie, Human vertebral body apparent and hard tissue stiffness, J. Biomech. 31 (1998) 1009–1015 [CrossRef] [PubMed] [Google Scholar]
  26. G.S. Beaupré, W.C. Hayes, Finite element analysis of a three-dimensional open-celled model for trabecular bone, J. Biomech. Eng. 107 (1985) 249–256 [CrossRef] [PubMed] [Google Scholar]
  27. B. Van Rietbergen, H. Weinans, R. Huiskes, A. Odgaard, A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models, J. Biomech. 28 (1995) 69–81 [CrossRef] [PubMed] [Google Scholar]
  28. B. Van Rietbergen, S. Majumdar, W. Pistoia, D.C. Newitt, M. Kothari, A. Laib, P. Ruegsegger, Assessment of cancellous bone mechanical properties from micro-FE models based on micro-CT, pQCT and MR images, Technol. Health Care 6 (1998) 413–420 [PubMed] [Google Scholar]
  29. H.H. Bayraktar, T.M. Keaveny, Mechanisms of uniformity of yield strains for trabecular bone, J. Biomech. 37 (2004) 1671–1678 [CrossRef] [PubMed] [Google Scholar]
  30. M. Charlebois, M. Jirasek, P.K. Zysset, A nonlocal constitutive model for trabecular bone softening in compression, Biomech. Model. Mechanobiol. 9 (2010) 597–611 [CrossRef] [PubMed] [Google Scholar]
  31. E. Dall’Ara, R. Schmidt, D. Pahr, P. Varga, Y. Chevalier, J. Patsch, F. Kainberger, P. Zysset, A nonlinear finite element model validation study based on a novel experimental technique for unducing anterior wedge-shape fractures in human vertebral bodies in vitro, J. Biomech. 43 (2010) 2374–2380 [CrossRef] [PubMed] [Google Scholar]
  32. D. Garcia, P.K. Zysset, M. Charlebois, A. Curnier, A three dimensional elastic plastic damage constitutive law for bone tissue, Biomech. Model. Mechanobiol. 8 (2009) 149–165 [CrossRef] [PubMed] [Google Scholar]
  33. H.J. Werner, H. Martin, D. Behrend, K.P. Schmitz, H.C. Schober, The loss of stiffness as osteoporosis progresses, Med. Eng. Phys. 18 (1996) 601–606 [CrossRef] [PubMed] [Google Scholar]
  34. U. Wolfram, H.J. Wilke, P.K. Zysset, Valid finite element models of vertebral trabecular bone can be obtained using tissue properties measured with nanoindentation under wet conditions, J. Biomech. 43 (2010) 1731–1737 [CrossRef] [PubMed] [Google Scholar]
  35. T. Hoc, L. Henry, M. Verdier, D. Aubry, L. Sedel, A. Meunier, Effect of microstructure on the mechanical properties of Haversian cortical bone, Bone 38 (2006) 466–474 [CrossRef] [PubMed] [Google Scholar]
  36. D. Ulrich, B. Van Rietbergen, H. Weinans, P. Rüegsegger, Finite element analysis of trabecular bone structure : a comparison of image-based meshing techniques, J. Biomech. 31 (1998) 1187–1192 [CrossRef] [PubMed] [Google Scholar]
  37. C. Chappard, A. Marchadier, C.L. Benhamou, Side-to-side and within-side variability of 3D bone microarchitecture by conventional micro-computed tomography of paired iliac crest biopsies, Bone 43 (2008) 203–208 [CrossRef] [PubMed] [Google Scholar]
  38. C. Öhman, M. Baleani, E. Perilli, E. Dall’Ara, S. Tassani, F. Baruffaldi, M. Viceconti, Mechanical testing of cancellous bone from the femoral head : Experimental errors due to off-axis measurements, J. Biomech. 40 (2007) 2426–2433 [CrossRef] [PubMed] [Google Scholar]
  39. E.F. Morgan, T.M. Keaveny, Dependence of yield strain of human trabecular bone on anatomic site, J. Biomech. 34 (2001) 569–577 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.