Open Access
Issue
Mechanics & Industry
Volume 14, Number 1, 2013
Page(s) 79 - 84
DOI https://doi.org/10.1051/meca/2013048
Published online 02 April 2013
  1. S. Dhole, A. Leygue, C. Bailly, R. Keunings, A single segment differential tube model with interchain tube pressure effect, J. Non-Newtonian Fluid Mech. 161 (2009) 10–18 [CrossRef] [Google Scholar]
  2. M. Doi, S.F. Edwards, The theory of polymer dynamics, Oxford sciences publications, 1986 [Google Scholar]
  3. G. Ianniruberto, G. Marrucci, A simple constitutive equation for entangled polymers with chain stretch, J. Rheology 45 (2001) 1305–1318 [CrossRef] [Google Scholar]
  4. A.E. Likhtman, R.S. Graham, Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie-Poly equation, J. Non-Newtonian Fluid Mech. 114 (2003) 1–12 [CrossRef] [Google Scholar]
  5. G. Marrucci, G. Ianniruberto, Flow-induced orientation and stretching of entangled polymers, Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences 361 (2003) 677–687 [CrossRef] [Google Scholar]
  6. G. Ianniruberto, G. Marrucci, On compatibility of the Cox-Merz rule with the model of Doi and Edwards, J. Non-Newtonian Fluid Mech. 65 (1996) 241–246 [CrossRef] [Google Scholar]
  7. K. Lee, M.R. Mackley, T.C.B. McLeish, T.M. Nicholson, O.G. Harlen, Experimental observation and numerical simulation of transient “stress fangs” within flowing molten polyethylene, J. Rheology 45 (2001) 1261–1277 [CrossRef] [Google Scholar]
  8. M.W. Collis, A.K. Lele, M.R. Mackley, R.S. Graham, D.J. Groves, A.E. Likhtman, T.M. Nicholson, O.G. Harlen, T.C.B. McLeish, L.R. Hutchings, C.M. Fernyhough, R.N. Young, Constriction flows of monodisperse linear entangled polymers: Multiscale modeling and flow visualization, J. Rheology 49 (2005) 501–522 [CrossRef] [Google Scholar]
  9. R. Valette, M.R. Mackley, G.H.F. del Castillo, Matching time dependent pressure driven flows with a Rolie Poly numerical simulation, J. Non-Newtonian Fluid Mech. 136 (2006) 18–125 [CrossRef] [Google Scholar]
  10. T. Gough, R. Spares, A.L. Kelly, S.M. Brook, P.D. Coates, Three-dimensional characterisation of full field stress and velocity fields for polyethylene melt through abrupt contraction, Plastics Rubber and Composites 37 (2008) 158–165 [CrossRef] [Google Scholar]
  11. D.G. Hassell, D. Auhl, T.C.B. McLeish, M.R. Mackley, The effect of viscoelasticity on stress fields within polyethylene melt flow for a cross-slot and contraction-expansion slit geometry, Rheologica Acta 47 (2008) 821–834 [CrossRef] [Google Scholar]
  12. D.G. Hassell, D. Hoyle, D. Auhl, O. Harlen, M.R. Mackley, T.C.B. McLeish, Effect of branching in cross-slot flow: the formation of “W cusps”, Rheologica Acta 48 (2009) 551–561 [CrossRef] [Google Scholar]
  13. L. Scelsi, M.R. Mackley, H. Klein, P.D. Olmsted, R.S. Graham, O.G. Harlen, T.C.B. McLeish, Experimental observations and matching viscoelastic specific work predictions of flow-induced crystallization for molten polyethylene within two flow geometries, J. Rheology 53 (2009) 859–876 [CrossRef] [Google Scholar]
  14. D. Auhl, D.M. Hoyle, D. Hassell, T.D. Lord, M.R. Mackley, O.G. Harlen, T.C.B. McLeish, Cross-slot extensional rheometry and the steady-state extensional response of long chain branched polymer melts, J. Rheology 55 (2011) 875–900 [CrossRef] [Google Scholar]
  15. G. Boukellal, A. Durin, R. Valette, J.F. Agassant, Evaluation of a tube-based constitutive equation using conventional and planar elongation flow optical rheometers, Rheologica Acta 50 (2011) 547–557 [CrossRef] [Google Scholar]
  16. A. Bach, K. Almdal, H.K. Rasmussen, O. Hassager, Elongational viscosity of narrow molar mass distribution polystyrene, Macromolecules 36 (2003) 5174–5179 [CrossRef] [Google Scholar]
  17. G. Marrucci, G. Ianniruberto, Interchain pressure effect in extensional flows of entangled polymer melts, Macromolecules 37 (2004) 3934–3942 [Google Scholar]
  18. M.H. Wagner, S. Kheirandish, O. Hassager, Quantitative prediction of transient and steady-state elongational viscosity of nearlymonodisperse polystyrene melts, J. Rheology 49 (2005) 1317–1327 [Google Scholar]
  19. C.W. Macosko, Rheology Principles, Measurements and Applications, VCH Publishers, New York, 1994 [Google Scholar]
  20. C.D. Han, L.H. Drexler, Studies of converging flows of viscoelastic polymeric melts. I. Stress-birefringent measurements in the entrance region of a sharp-edged slit die, J. Appl. Polym. Sci. 17 (1973) 2329–2354 [Google Scholar]
  21. N. Clemeur, R.P.G. Rutgers, B. Debbaut, Numerical evaluation of three dimensional effects in planar flow birefringence, J. Non-Newtonian Fluid Mech. 123 (2004) 105–120 [CrossRef] [Google Scholar]
  22. I. Sirakov, A. Ainser, M. Haouche, J. Guillet, Three-dimensional numerical simulation of viscoelastic contraction flows using the Pom-Pom differential constitutive model, J. Non-Newtonian Fluid Mech. 126 (2005) 163–173 [CrossRef] [Google Scholar]
  23. G. Ianniruberto, G. Marrucci, A multi-mode CCR model for entangled polymers with chain stretch, J. Non-Newtonian Fluid Mech. 102 (2002) 383–395 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.