Open Access
Mechanics & Industry
Volume 14, Number 1, 2013
Page(s) 71 - 77
Published online 07 March 2013
  1. P.V. Joseph, K. Joseph, S. Thomas, Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites, Compos. Sci. Technol. 59 (1999) 1625–1640 [Google Scholar]
  2. R.T. Woodhams, G. Thomas, D.K. Rodgers, Wood fibers as reinforcing fillers for polyolefins, Polym. Eng. Sci. 24 (1984) 1166–1171 [CrossRef] [Google Scholar]
  3. M. Zampaloni, F. Pourboghrat, S.A. Yankovich, B.N. Rodgers, J. Moore, L.T. Drzal, A.K. Mohanty, M. Misra, Kenaf natural fiber reinforced polypropylene composites: A discussion on manufacturing problems and solutions, Compos.: Part A 38 (2007) 1569–1580 [Google Scholar]
  4. K.L. Fung, X.S. Xing, R.K.Y. Li, S.C. Tjong, Y.W. Mai, An investigation on the processing of sisal fibre reinforced polypropylene composites, Compos. Sci. Technol. 63 (2003) 1255–1258 [Google Scholar]
  5. A.K. Bledzki, A.A. Mamun, O. Faruk, Abaca fibre reinforced PP composites and comparison with jute and flax fibre PP composites, Express Polym. Lett. 1 (2007) 755–762 [CrossRef] [Google Scholar]
  6. A. Kriker, G. Debicki, A. Bali, M.M. Khenfer, M. Chabannet, Mechanical properties of date palm fibres and concrete reinforced with date palm fibres in hot-dry climate, Cement Concrete Compos. (2005) 554–564 [Google Scholar]
  7. F.R.D. Tolëdo, K. scrivener, G. England, K. Ghavami, Durability of alkali-sensitive sisal and coconut fibers in cement mortar composites, Cement Concrete Compos. 22 (2OOO) 127–143 [Google Scholar]
  8. H. Gram, Durability of natural fibers in concrete, Swedish Cement Concrete Res. 83 (1983) 255 [Google Scholar]
  9. A.K. Bledzki, J. Gassan, Composites reinforced with cellulose based fibers, Progress polym. Sci. 24 (1999) 221–274 [Google Scholar]
  10. L. Nilson, Reinforced Concrete with Sisal and other vegetal fibre, Swedish Council for Building Research, 1975 [Google Scholar]
  11. T.S.R. Ayyar, P.K. Mirihagalla, Elephant grass fibers and reinforcing fiber, Magazine Concrete Res. 28 (1976) 162–67 [CrossRef] [Google Scholar]
  12. R.S.P. Coutts, Flax fibers as a reinforcement in cement mortar, Int. J. Cement Compos. Lightweight Concrete 5 (1983) 257–262 [CrossRef] [Google Scholar]
  13. F.R.D. Tolëdo, K. Ghavami, D. Englan, K. Scrivener, Development of vegetal fibres-mortar composites of improved durability, Cement Concrete Compos. 25 (2003) 12 [Google Scholar]
  14. K.L. Fung, X.S. Xing, R.K.Y. Li, S.C. Tjong, Y.-W. Mai, An investigation on the processing of sisal fibre reinforced polypropylene composites, Compos. Sci. Technol. 63 (2003) 1255–1258 [Google Scholar]
  15. D. Bhattacharyya, M. Bowis, K. Jayaraman, Thermoforming wood fibre-polypropylene composite sheets, Compos. Sci. Technol. 63 (2003) 353–365 [Google Scholar]
  16. F. Vilaseca, A.V. Gonzalez, P.J.H. Franco, M.A. Pèlach, J.P. López, P. Mutjé, Biocomposites from abaca strands and polypropylene, Part I: Evaluation of the tensile properties, Bioresource Technology 101 (2010) 387–395 [CrossRef] [PubMed] [Google Scholar]
  17. P. Mutjé, A. Lopez, M.E. Vallejos, J.P. Lopez, F. Vilaseca, Full exploitation of cannabis sativa as reinforcement/filler of thermoplastic composite materials, Composites: Part A 38 (2007) 369 [CrossRef] [Google Scholar]
  18. M.M. Thwe, K. Liao, Effects of environmental aging on the mechanical properties of bamboo-glass fiber reinforced polymer matrix hybrid composites, Composites: Part A 33 (2002) 43–52 [CrossRef] [Google Scholar]
  19. A.K. Rana, A. Mandal, S. Bandyopadhyay, Short jute fiber reinforced polypropylene composites: effect of compatibiliser, impact modifier and fiber loading, Compos. Sci. Technol. 63 (2003) 801–806 [Google Scholar]
  20. F. Vilaseca, J.A. Mendez, A. Pelach, M. Llop, N. Canigueral, J. Girones, X. Turon, P. Mutje, Composite materials derived from biodegradable starch polymer and jute strands, Process Biochem. 42 (2007) 329–334 [Google Scholar]
  21. K.M. Pillai, Modeling the unsaturated flow in liquid composite molding processes: A review and some thoughts, J. Compos. Mater. 38 (2004) 2097–2118 [Google Scholar]
  22. N. Patel, V. Rohatgi, L.J. Lee, Micro scale flow behavior and void formation mechanism during impregnation through a unidirectional stitched fiberglass mat, J. Compos. Mater. 35 (1995) 837–851 [Google Scholar]
  23. Y.-T, Chen, C.W. Macosko, H.T. Davis, Wetting of fiber mats for composites manufacturing: II. Air entrapment model, J. Compos. Mater. 41 (1995) 2274–2281 [Google Scholar]
  24. Md. Rezaur Rahman, Md. Monimul Huque, Md. Nazrul Islam, Mahbub Hasan, Improvement of physicomechanical properties of jute fiber reinforced polypropylene composites by post-treatment, Composites: Part A 39 (2008) 1739–1747 [Google Scholar]
  25. P. Wambua, J. Ivens, I. Verpoest, Natural fibres: can they replace glass in fibre reinforced plastics, Compos. Sci. Technol. 63 (2003) 1259–1264 [Google Scholar]
  26. M.N. Belgacem, A. Gandini, The surface modification of cellulose fibres for use as reinforcing elements in composite materials, Compos. Inter. 12 (2005) 41 [CrossRef] [Google Scholar]
  27. M.N. Anglès, J. Salvado, A. Dufresne, Steam-exploded residual softwood-filled polypropylene composites, J. Appl. Polym. Sci. 74 (1999) 1962 [Google Scholar]
  28. D.F. Caulfield, D. Feng, S. Prabawa, R.A. Young, A.R. Sanadi, Interphase effects on the mechanical and physical aspects of natural fiber composites, Die Angewandte Makromolekulare Chemie 272 (1999) 57 [CrossRef] [Google Scholar]
  29. M.E. Malainine, M. Mahrouz, M.A. Dufresne, Lignocellulosic flour from cladodes of Opuntia ficus-indica reinforced polypropylene composites, Macromol. Mater. Eng. 289 (2004) 855 [Google Scholar]
  30. H. Faria, N. Cordeiro, M.N. Belgacem, A. Dufresne, Dwarf Cavendish as a source of natural fibers in poly(propylene)-based composites, Macromol. Mat. Eng. 291 (2006) 16 [CrossRef] [Google Scholar]
  31. H. Ismail, M. Edyhan, B. Wirjosentono, Bamboo fiber filled natural rubber composites: the effects of filler loading and bonding agent, Polymer Testing 21 (2002) 39–144 [Google Scholar]
  32. S. Joseph, M.S. Sreekala, Z. Oommen, P. Koshy, S. Thomas, A comparison of mechanical properties of phenol formaldehyde composites reinforced with banana fibers and glass fibers, Compos. Sci. Technol. 62 (2002) 1857–1868 [Google Scholar]
  33. A.L. Andonian, Y.W. Mai, B. Cotterell, Strength and fracture properties of cellulose fibers reinforced cement composites, Int. J. Cement Compos. Lightwigh Concrete 11 (1979) 151–158 [Google Scholar]
  34. M.M. Khenfer, P. Morlier, Effet de la longueur des fibres sur les propriétés mécaniques des ciments renforcés de fibres cellulosiques, Mater. Struct. (1991) 185–190 [Google Scholar]
  35. A.K. Bledzki, J. Gassan, Composites reinforced with cellulose based fibers, Progress Polym. Sci. 24 (1999) 221–274 [Google Scholar]
  36. M. Sotton, Perspectives de développement textiles et technique de lin, Journées d’échanges Franco-Allemands sur le lin, Rouen, 1992 [Google Scholar]
  37. F.A.L. Dullien, Porous media: fluid transport and pore structure, second edition, 1995, 48, B37–B37 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.