Open Access
Mechanics & Industry
Volume 14, Number 3, 2013
Page(s) 175 - 189
Published online 04 June 2013
  1. M. Zvanik, OC presentation at CFA show, Tampa, Florida, 2001 [Google Scholar]
  2. IEC 61400-1, Wind turbines, Part 1: Design requirements, edition 3, International Electrotechnical Commission, 2005 [Google Scholar]
  3. Guideline for the certification of offshore wind turbines, Germanische Lloyd, 2005 [Google Scholar]
  4. Guideline for the certification of wind turbines, with supplement 2004, Germanische Lloyd, 2003 [Google Scholar]
  5. [Google Scholar]
  6. [Google Scholar]
  7. [Google Scholar]
  8. Guidelines for Design of Wind Turbines, Det Norske Veritas and Risø National Laboratory, 2002 [Google Scholar]
  9. Offshore standard DNV-OS-J101 Design of offshore wind turbine structures, Det Norske Veritas, 2004 [Google Scholar]
  10. Offshore standard DNV-OS-J102 Design and manufacture of wind turbine blades, Offshore and onshore wind turbines, Det Norske Veritas, 2006 [Google Scholar]
  11. C.W. Kensche, Fatigue of composites for wind turbines, Int. J. Fatigue 28 (2006) 1363–1374 [CrossRef] [Google Scholar]
  12. Gurit, Section 2: Structural Design, in Wind energy composite materials handbook, downloadable from: [Google Scholar]
  13. T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi, Wind Energy Handbook, 2001, John Wiley & Sons [Google Scholar]
  14. S. Drapier, A. Pagot, A. Vautrin, P. Henrat, Influence of the stitching density on the transverse permeability of non-crimped new concept (NC2) multiaxial reinforcements: measurements and predictions, Compos. Sci. Technol. (2002) 1979–1991 [Google Scholar]
  15. T.S. Lundström, The permeability of non-crimp stitched fabrics, Compos. Part A 31 (2000) 1345–1353 [Google Scholar]
  16. M. Nordlund, T.S. Lundström, Numerical Study of the Local Permeability of Noncrimp Fabrics, J. Compos. Mater. 39 (2005) 929–947 [CrossRef] [Google Scholar]
  17. M. Nordlund, T.S. Lundstrom, V. Frishfelds, A. Jakovics, Permeability network model for non-crimp fabrics, Composites Part A: Appl. Sci. Manufacturing, Selected Contributions from the 7th International Conference on Flow Processes in Composite Materials held at University of Delaware, USA 37 (2006) 826–835 [Google Scholar]
  18. L.E. Asp, F. Edgren, A. Sjögren, Effects of stitch pattern on the mechanical properties of non-crimp fabric composites, in ECCM 11, Rhodos, 2004 [Google Scholar]
  19. F. Edgren, D. Mattsson, L.E. Asp, J. Varna, Formation of damage and its effects on non-crimp fabric reinforced composites loaded in tension, Compos. Sci. Technol. 64 (2004) 675–692 [CrossRef] [Google Scholar]
  20. S.V. Lomov, D.S. Ivanov, K. Vallons, I. Verpoest, D.V. Klimshin, T.C. Truong, Peculiarities of damage behaviour of NCF carbon/epoxy laminates under tension, in ICCM 16, Kyoto, Japan, 2007 [Google Scholar]
  21. K. Vallons, The behaviour of carbon fibre–epoxy NCF composites under various mechanical loading conditions, Doctoral dissertation, Dept. of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, 2009 [Google Scholar]
  22. K. Vallons, S.V. Lomov, I. Verpoest, Fatigue and post-fatigue behaviour of carbon/epoxy non crimp fabric composites. in 16th international conference on composite materials, Kyoto, Japan, 2007 [Google Scholar]
  23. K. Vallons, S.V. Lomov, I. Verpoest, Damage evolution in static and fatigue tensile loading of carbon/epoxy NCF composites, in ECOMAS Thematic Conference on Mechanical Response of composites, Porto, 2007 [Google Scholar]
  24. K. Vallons, S.V. Lomov, I. Verpoest, Mechanical properties and damage evolution during static and fatigue loading of carbon-epoxy ncf composites, in Sampe Europe International Conference ’07, Paris, 2007 [Google Scholar]
  25. T.C. Truong, M. Vettori, S. Lomov, I. Verpoest, Carbon composites based on multi-axial multi-ply stitched preforms, Part 4. Mechanical properties of composites and damage observation, Composites Part A 36 (2005) 1207–1221 [CrossRef] [Google Scholar]
  26. M. Vettori, T.T. Chi, S.V. Lomov, I. Verpoest, Progressive damage characterization of stitched, biaxial, multi-ply carbon fabrics composites, in ECCM 11, Rhodos, 2004 [Google Scholar]
  27. V. Carvelli, T.T. Chi, M.S. Larosa, S.V. Lomov, C. Poggi, D.R. Angulo, I. Verpoest, Experimental and numerical determination of the mechanical properties of multi-axial multi-ply composites, in ECCM 11, Rhodos, 2004 [Google Scholar]
  28. G.A. Bibo, P.J. Hogg, M. Kemp, Mechanical characterisation of glass- and carbon-fibre-reinforced composites made with non-crimp fabrics, Compos. Sci. Technol. 57 (1997) 1221–1241 [CrossRef] [Google Scholar]
  29. A.P. Godbehere, A.R. Mills, P. Irving, Non-crimp fabrics versus prepreg CFRP composites – A comparison of mechanical performance, in 6th international conference on fibre reinforced composites – FRC’94, Newcastle, 1994 [Google Scholar]
  30. P.A. Smith, Carbon Fiber Reinforced Plastics–Properties (2.04), in Comprehensive Composite Materials, Elsevier Sciences Ltd, 2000, pp. 107–150 [Google Scholar]
  31. S. Sandford, L. Boniface, S.L. Ogin, S. Anand, D. Bray, C.R. Messenger, Damage accumulation in non-crimp fabric based composites under tensile loading, in Proceedings of the Eighth European Conference on Composite Materials, ECCM-8,1998, Naples, Italy, Woodhead Publishing, Cambridge, UK [Google Scholar]
  32. Company product information Owens Corning: Double Bias Fabrics (±45°) [Google Scholar]
  33. Company product information Owens Corning: Quadriaxial Fabrics (0°/90°/±45°) [Google Scholar]
  34. Company product information Owens Corning: Triaxial Fabrics (0°/±45° OR 90°/±45°) [Google Scholar]
  35. Company product information Owens Corning: Unidirectional Fabrics (0° or 90°) [Google Scholar]
  36. C.W. Kensche, Fatigue of materials and components for wind turbine rotor blades, Office for official publications of the European communities, 1996 [Google Scholar]
  37. J. Wedel-Heinen, J. KrygerTadich, Qualification of materials and blades for wind turbines, in RisøBlade Materials Symposium, 2006 [Google Scholar]
  38. S. Wessels, M. Strobel, A.V. Wingerde, I. Koprek, H.-G. Busmann, Improved fatigue design methods for offshore wind turbine rotor blades condisering non-linear Goodman analysis combined with finite element analysis, in EWEC, Warsaw, 2010 [Google Scholar]
  39. D. Veldkamp, A probabilistic approach to wind turbine fatigue design, in EWEC, Milan, Italy, 2007 [Google Scholar]
  40. B. Hayman, J. Wedel-Heinen, P. Brøndsted, Material challenges in present and future wind energy, MRS Bulletin 33 (2008), [Google Scholar]
  41. L.G.J. Janssen, A.M.V. Wingerde, C.W. Kensche, T.P. Philippidis, P. Brøndsted, A.G. Dutton, R.P.L. Nijssen, O. Krause, Reliable Optimal Use of Materials for Wind Turbine Rotor Blades, OPTIMAT BLADES, Report ECN-C-06-023, Office for Official Publications of the European Communities, Luxembourg, 2006 [Google Scholar]
  42. J. Wedel-Heinen, J.K. Tadich, C. Brokopf, L.G.J. Janssen, A.M.V. Wingerde, D.R.V.V. Delft, C.W. Kensche, T.P. Philippidis, A.P. Brøndsted, G. Dutton, R.P.L. Nijssen, I. Verpoest, Implementation of OPTIMAT in Technical Standards, OPTIMAT BLADES, OBTG6R002 rev. 8, ENK6-CT-2001-00552 PROJECT No.: NNE5-2001-00174, 2006 [Google Scholar]
  43. IEC 61400-23, Technical Specification, Wind turbine generation systems – Part 23: Full-scale structural testing of rotor blades, International Electrotechnical Commission, 2001 [Google Scholar]
  44. K.H. Boller, Fatigue characteristics of RP laminates subjected to axial loading, Modern Plastics 41 (1964) 145 [Google Scholar]
  45. J.W. Davis, J.A. McCarthy, J.N. Schurb, Fatigue resistance of reinforced plastics, Mater. Des. Engng. (1964) 87–91 [Google Scholar]
  46. J.W. Dally, L.J. Broutman, Frequency effects on the fatigue of glass reinforced plastics, J. Compos. Mater. 1 (1967) 424–442 [CrossRef] [Google Scholar]
  47. K.H. Boller, Fatigue fundamentals for composite materials, ASTM STP 460 (1969) 217–235 [Google Scholar]
  48. D. Dew-Hughes, J.L. Way, Fatigue of fibre – reinforced plastics: a review, Compos. 4 (1973) 167-173 [CrossRef] [Google Scholar]
  49. C.K.H. Dharan, Fatigue failure in graphite fibre and glass fibre-polymer composites, J. Mater. Sci. 10 (1975) 1665–1670 [CrossRef] [Google Scholar]
  50. J.V. Gauchel, I. Steg, J.E. Cowling, Reducing effect of water on fatigue properties of S-glass epoxy composites, ASTM STP 569 (1975) 45–52 [Google Scholar]
  51. J.N. Davis, G.J. Sundsrud, Fatigue data on a variety of nonwoven glass composites for helicopter rotor blades, ASTM STP 674 (1979) 137–148 [Google Scholar]
  52. S.K. Joneja, Matrix contribution to fatigue behavior of glass reinforced polyester composites, J. Reinforced Plastics Compos. 6 (1987) 343–356 [CrossRef] [Google Scholar]
  53. O. Konur, F.L. Matthews, Effect of the properties of the constituents on the fatigue performance of composites: a review, Compos. 20 (1989) 317–328 [CrossRef] [Google Scholar]
  54. P.T. Curtis, Tensile fatigue mechanisms in unidirectional polymer matrix composite materials, Int. J. Fatigue 13 (1991) 377–382 [CrossRef] [Google Scholar]
  55. M.R. Bhat, C.R.L. Murthy, Fatigue damage stages in unidirectional glass-fibre-epoxy composites: identification through acoustic emission technique, Int. J. Fatigue 15 (1993) 401–405 [CrossRef] [Google Scholar]
  56. H. El Kadi, F. Ellyin, Effect of stress ratio on the fatigue of unidirectional glass fibre/epoxy composite laminae, Compos. 25 (1994) 917–924 [Google Scholar]
  57. G.D. Sims, Fatigue test methods, problems and standards, in Fatigue in composites, in: B. Harris (ed.), Woodhead publishing limited, 2003, pp. 36–63 [Google Scholar]
  58. V. Giavotto, V. Wagner, M. Caslini, C. Zanotti, Consideration of early fatigue damage on damage accumulation and on delamination mechanism in composite materials structures, in 14th ICAF conference, 1987 [Google Scholar]
  59. M.J. Salkind, Fatigue of composite materials, ASTM STP 497 (1982) 143–169 [Google Scholar]
  60. R. Talreja, K. Anthony, Z. Carl, Fatigue of polymer matrix composites, in Comprehensive Composite Materials, Pergamon, Oxford, 2000, pp. 529–552 [Google Scholar]
  61. J. Gassan, T. Dietz, Fatigue behavior of cross-ply glass-fiber composites based on epoxy resins of different toughnesses, Compos. Sci. Technol. 61 (2001) 157–163 [CrossRef] [Google Scholar]
  62. M.J. Owen, G. Rose, Polyester flexibility versus fatigue behaviour of fibre reinforced plastics, Mod. Plast. 47 (1970) 130–138 [Google Scholar]
  63. M.J. Owen, Fatigue, glass reinforced plastics, in: B. Parkyn (ed.), Iliffe Books, London, 1970, pp. 251–267 [Google Scholar]
  64. G.M. Newaz, Influence of matrix material on flexural fatigue behaviour of unidirectional composites, Compos. Sci. Technol. 24 (1985) 199–214 [CrossRef] [Google Scholar]
  65. J.A. Epaarachchi, P.D. Clausen, An empirical model for fatigue behavior prediction of glass fibre-reinforced plastic composites for various stress ratios and test frequencies, Composites Part A Appl. Sci. Manufacturing 34 (2003) 313–326 [Google Scholar]
  66. P.W. Bach, ECN investigation of polyester composite materials, in Fatigue of materials and components for wind turbine rotor blades, in: C.W. Kensche (ed.), German Aerospace Establishment, 1996, pp. 10–38 [Google Scholar]
  67. P.K. Mallick, Fiber-reinforced composites: Materials, Manufacturing and Design, 3rd edition, CRC Press – Taylor & Francis Group, 2008 [Google Scholar]
  68. D.S. Cairns, J.D. Skramstad, Evaluation of hand lay-up and resin transfer molding in composite wind turbine blade manufacturing, 2000, Sandia National Laboratories, SAND2000-1425 [Google Scholar]
  69. E.B. Larsen, Pressure bag molding: manufacturing, mechanical testing, non-destructive evaluation, and analysis, 2007, Sandia National Laboratories, SAND2006-7855P [Google Scholar]
  70. OPTIMAT BLADES PROJECT, data and publications available from: [Google Scholar]
  71. DOE/MSU composite material fatigue database, March 31, 2010 version 19.0. Available from: [Google Scholar]
  72. J.F. Mandell, R.M. Reed, D.D. Samborsky, Fatigue of fiberglass wind turbine blade materials, Department of chemical engineering, Montana state university, SAND92-7005, 1992 [Google Scholar]
  73. J.F. Mandell, D.D. Samborsky, DOE/MSU Composite material fatigue database: Test methods, materials, and analysis, Sandia National Laboratories, Albuquerque, NM, Contractor Report SAND97-3002, 1997 [Google Scholar]
  74. J.F. Mandell, D.D. Samborsky, D.S. Cairns, Fatigue of composite materials and substructures for wind turbine blades, Sandia National Laboratories, Albuquerque, NM Contractor Report SAND2002-0771, 2002 [Google Scholar]
  75. J.F. Mandell, D.D. Samborsky, D.W. Combs, M.E. Scott, D.S. Cairns, Fatigue of composite material beam elements representative of wind turbine blade substructure, National Renewable Energy Laboratory, NREL Contractor Report SR-500-24379, 1998 [Google Scholar]
  76. N.K. Wahl, J.F. Mandell, D.D. Samborsky, Spectrum fatigue lifetime and residual strength for fiberglass laminates, Sandia National Laboratories, A lbuquerque, NM Contractor Report SAND2002-0546, 2002 [Google Scholar]
  77. M. Wouters, Effects of fibre bundle size and stitch pattern on the static properties of unidirectional carbon-fibre non-crimp fabric composites, in Department of applied physics and mechanical engineering, division of polymer engineering, Lulea university of technology, Lulea, 2005, p. 85 [Google Scholar]
  78. D.D. Samborsky, Fatigue of E-glass fiber reinforced composite materials and substructures, Montana State University, Bozeman, Montana, 1999 [Google Scholar]
  79. J. Locke, U. Valencia, Design studies for twist-coupled wind turbine blades, Sandia National laboratories, SAND2004-0522, 2004 [Google Scholar]
  80. Gurit, Section 3: Blade Manufacturing Process, in Wind energy composite materials handbook, downloadable from: [Google Scholar]
  81. F. Keßling, Modellierung des aerolastischen gesamtsytems einer windturbine mit hilfe symbolischer programmierung, DFVLR, DFVLR-FB 84-10, 1984 [Google Scholar]
  82. P.J. Hogg, Manufacturing challenges for wind turbines. in Advanced Manufacturing for Composite Technologies Conference, Manchester, UK, 2008 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.