Open Access
Issue
Mechanics & Industry
Volume 14, Number 4, 2013
Page(s) 287 - 297
DOI https://doi.org/10.1051/meca/2013066
Published online 22 August 2013
  1. O. Pierson, Investigation of influence of tube arrangement on convection heat transfer and flow resistance in cross-flow of gases in tube banks, ASME Trans. 59 (1937) 563–572 [Google Scholar]
  2. A. Zukauskas, R. Ulinskas, Heat Transfer in Tube Banks in Cross-Flow, Hemisphere, New York, 1988 [Google Scholar]
  3. M. Arie, M. Kiya, M. Moriya, H. Mori, Pressure fluctuations on the surface of two cylinders in tandem arrangement, J. Fluids Eng. 105 (1983) 161–167 [CrossRef] [Google Scholar]
  4. Y.N. Chen, Fluctuating lift forces of the Karman vortex streets on single cylinders and tube bundles, part 3 – Lift forces in tube bundles, Trans. ASME, J. Engg. (1972). For Industry 94, 603–628; in Flow induced vibration of circular cylinder structures by S.S. Chen [Google Scholar]
  5. M.J. Pettigrew, P.L. Ko, A comprehensive approach to avoid vibration on fretting in shell and tube heat exchangers. Flow induced vibration of power plant components, PVP-41, ASME publications (1980), pp. 1–18; in Flow induced vibration of circular cylinder structures by S.S. Chen [Google Scholar]
  6. W. Wu, S. Huang, N. Barltrop, Current induced instability of two circular cylinders, Appl. Ocean Res. 24 (2002) 287–297 [CrossRef] [Google Scholar]
  7. I. Afgan, Industrial Applications of Large Eddy Simu-lation – Ph.D. thesis – University of Manchester, 2007 [Google Scholar]
  8. S. Mittal, V. Kumar, Flow induced oscillations of two cylinders in tandem and staggered arrangements, J. Fluids Struct. 15 (2001) 717–736 [CrossRef] [Google Scholar]
  9. D. Wolfe, S. Zaida, Feedback control of vortex shedding from two tandem cylinders, J. Fluids Struct. 17 (2003) 579–592 [CrossRef] [Google Scholar]
  10. K. Lam, S.C. Lo, A visualization study of cross flow around four cylinders in a square configuration, J. Fluids Struct. 6 (1992) 109–131 [CrossRef] [Google Scholar]
  11. A.T. Sayers, Flow interference between four equispaced cylinders when subjected to a cross flow, Journal of Wind Engineering and Industrial Aerodynamics 31 (1988) 9–28 [CrossRef] [Google Scholar]
  12. A.T. Sayers, Vortex shedding from groups of three and four equispaced cylinders situated in cross-flow, Journal of Wind Engineering and Industrial Aerodynamics 34 (1990) 213–221 [CrossRef] [Google Scholar]
  13. K. Lam, X. Fang, The effect of interference of four equispaced cylinders in cross flow on pressure and force coefficients, J. Fluids Struct. 9 (1995) 195–214 [CrossRef] [Google Scholar]
  14. K. Lam, S.C. Lo, A visualization study of cross-flow around four cylinders in a square configuration, J. Fluids Struct. 6 (1992) 109–131 [CrossRef] [Google Scholar]
  15. K. Lam, R.M.C. So, J.Y. Li, Flow around four cylinders in a square configuration using surface vorticity method, In Proceedings of the Second International Conference on Vortex Methods, Istanbul, Turkey, 2001 [Google Scholar]
  16. K. Lam, J.Y. Li, K.T. Chan, R.M.C. So, Velocity map and flow pattern of flow around four cylinders in a square configuration at low Reynolds number and large spacing ratio using particle image velocimetry, In Proceedings of the Second International Conference on Vortex Methods, Istanbul, Turkey, 2001 [Google Scholar]
  17. K. Lam, J.Y. Li, K.T. Chan, R.M.C. Son, The flow patterns of cross flow around four cylinders in an in-line square configuration. In the Tenth International Symposium on Flow Visualization, Kyoto, Japan, 2002 [Google Scholar]
  18. E.D. Grimison, Correlation and Utilisation of New Data on Flow Resistance and Heat Transfer for Crossflow of Gases over Tube Banks, Trans. ASME 59 (1937) 583–594 [Google Scholar]
  19. A. Zukauskas, Heat Transfer from tubes in Crossflow, Adv. Heat Trans. 8 (1972) 93–160 [CrossRef] [Google Scholar]
  20. T. Yahiaoui, L. Adjlout, O. Imine, Experimental investigation of in-line tube bundles, Mechanika (2010) 37–43 [Google Scholar]
  21. O. Ladjedel, T. Yahiaoui, L. Adjlout, O. Imine, Experimental and Numerical Studies of Drag Reduction on a Circular Cylinder, World Academy of Science, Eng. Technol. 77 (2011) 357–361 [Google Scholar]
  22. T. Yahiaoui, Étude de l’influence des paramètres géométriques sur l’écoulement autour d’un faisceau de tubes, Thesis University of science and technology of Oran, Algeria, 2010 [Google Scholar]
  23. P. Le Gal, I. Peschard, M.-P. Chauve, Y. Takeda, Collective behavior of wakes downstream a row of cylinders, Phys. Fluids 8 (1996) 2097 [CrossRef] [Google Scholar]
  24. S. Ishigai, E. Nishikawa, Experimental study of structure of gas flow in tube banks with tube axes normal to flow, Bull. J. Soc. Mech. (1975) Eng. 18 528 [Google Scholar]
  25. J.L. Auger, J. Coutanceau, Ecoulement transversal de l’air à travers une grille de tubes, Entropie 86 (1979) 13 [Google Scholar]
  26. M. Hayashi, A. Sakurai, Y. Ohya, Wake interference of a row of normal flat plates arranged side by side in a uniform flow, J. Fluid Mech. 164 (1986) 1 [CrossRef] [Google Scholar]
  27. M.M. Zdravkovich, D.L. Pridden, Interference between two circular cylinders; series of unexpected discontinuities, J. Ind. Aerodyn 2 (1977) 255–270 [CrossRef] [Google Scholar]
  28. M.A. Mehrabian, Heat transfer and pressure drop characteristics of cross flow of air over a circular tube in isolation and/or in a tube bank, The Arabian J. Sci. Eng. 32 (2007) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.