Open Access
Mechanics & Industry
Volume 14, Number 4, 2013
Page(s) 275 - 285
Published online 22 August 2013
  1. D. Dowson, A generalized Reynolds equation for fluid film lubrication, Int. J. Mech. Sci. 4 (1962) 159–170 [CrossRef] [Google Scholar]
  2. H.A. Ezzat, S.M. Rohde, A study of thermohydrodynamic performance of finite slider bearings, ASME J. Lubric. Technol. 95 (1973) 298–307 [CrossRef] [Google Scholar]
  3. R. Boncompain, M. Fillon, J. Frene, Analysis of thermal effects in hydrodynamic bearings, ASME J. Tribol. 108 (1986) 219–224 [CrossRef] [Google Scholar]
  4. J.Y. Auloge, P. Bourgin, B. Gay, The optimum design of one-dimensional bearings with non Newtonian lubricants, Trans. ASME J. Lubric. Technol. 105 (1983) 391–39 [CrossRef] [Google Scholar]
  5. M. Fillon, M.M. Khonsari, Thermohydrodynamic design charts for tilting-pad journal bearings, ASME J. Tribol. 118 (1996) 232–238 [CrossRef] [Google Scholar]
  6. M. Arghir, A. Alsayed, D. Nicolas, The finite volume solution of the Reynolds equation of lubrication with film discontinuities, Int. J. Mech. Sci. 44 (2002) 2119–2132 [CrossRef] [Google Scholar]
  7. R.K. Sharma, R.K. Pandey, Experimental studies of pressure distribution in finite slider bearing with single continuous surface profiles on the pad, Tribol. Int. (2009) 42 1040–1045 [Google Scholar]
  8. J.I. Tello, Regularity of solutions to a lubrication problem with discontinuous separation data, Nonlinear Anal. 53 (2003) 1167–77 [CrossRef] [MathSciNet] [Google Scholar]
  9. O. Hideki, Thermohydrodynamic lubrication analysis method of step bearings, IHI Eng. Rev. 38 (2005) 6–10 [Google Scholar]
  10. M. Dobrica, M. Fillon, Reynolds’ model suitability in simulating Rayleigh step bearing thermohydrodynamic problems, Tribol. Trans. 48 (2005) 522–530 [Google Scholar]
  11. D.G. Farmer, J.J. Shepherd, Slip flow in the gas-lubricated Rayleigh step-slider bearing, Int. J. App. Mech. Eng. 11 (2006) 593–608 [Google Scholar]
  12. N.B. Naduvinamani, A. Siddangouda, Effect of surface roughness on the hydrodynamic lubrication of porous step-slider bearings with couple stress fluids, Tribol. Int. 40 (2007) 780–793 [Google Scholar]
  13. R. Rahmani, A. Shirvani, H. Shirvani, Analytical analysis and optimisation of the Rayleigh step slider bearing, Tribol. Int. 42 (2009) 666–674 [CrossRef] [Google Scholar]
  14. D. Lee, D. Kim, Three-dimensional thermohydrodynamic analyses of Rayleigh step air foil thrust bearing with radially arranged bump foils, Tribology. Trans. 54 (2011) 432–448 [CrossRef] [Google Scholar]
  15. S.A. Gandjalikhan Nassab, Inertia effect on thermohydrodynamic characteristics of journal bearings, Proc. ImechE 219 (2005), Part J, J. Tribol. 459–467 [Google Scholar]
  16. M. Khonsari, E.R. Booser, Applied Tribology 2e: Bearing design and lubrication, John Willy & Sons. Ltd., 2008, pp. 29–41 [Google Scholar]
  17. W. Jianming, J. Gaobing, The optimum design of the Rayleigh slider bearing with a power law fluid, Wear 129 (1989) 1–11 [CrossRef] [Google Scholar]
  18. S.V. Patankar, D.B. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Int. J. Heat Mass Transf. 15 (1972) 1787–1806 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.