Open Access
Mechanics & Industry
Volume 14, Number 4, 2013
Page(s) 305 - 315
Published online 30 September 2013
  1. C. Torrez, C. Andre, Simulation of a Rushton turbine mixing yield stress fluids: application of the Metzner-Otto concept, Chem. Eng. Technol. 22 (1999) 701–706 [CrossRef] [Google Scholar]
  2. P.E. Arratia, J. Kukura, J. Lacombe, F.J. Muzzio, Mixing of Shear-Thinning Fluids with Yield Stress in Stirred Tanks. AIChE J. 52 (2006) 2310–2322 [CrossRef] [Google Scholar]
  3. F. Ein-Mozaffari, S.R. Upreti, Using ultrasonic Doppler velocimetry and CFD modeling to investigate the mixing of non-Newtonian fluids possessing yield stress, Chem. Eng. Res. Des. 87 (2009) 515–523 [CrossRef] [Google Scholar]
  4. P.A. Tanguy, F. Bertrand, E. Brito, Mixing of viscoplastic fluids with anchor impellers, Chemical Engineering Symposium Series (1994) 525–532 [Google Scholar]
  5. F. Bertrand, P.A. Tanguy, E. Brito, A new perspective for the mixing of yield stress fluids with anchor impellers, J. Chem. Eng. Jpn 29 (1996) 51–58 [CrossRef] [Google Scholar]
  6. D. Anne-Archard, M. Marouche, H.C. Boisson, Hydrodynamics and Metzner-Otto correlation in stirred vessels for yield stress fluids, Chem. Eng. J. 125 (2006) 15–24 [Google Scholar]
  7. F. Savreux, P. Jay, A. Magnin, Viscoplastic fluid mixing in a rotating tank, Chem. Eng. Sci. 62 (2007) 2290–2301 [CrossRef] [Google Scholar]
  8. M. Baccar, M.S. Abid, Caractérisation de l’écoulement turbulent et du transfert thermique générés par des mobiles ancre et barrière dans une cuve agitée, Int. J. Therm. Sci. 38 (1999) 892–903 [CrossRef] [Google Scholar]
  9. M. Baccar, M. Mseddi, M.S. Abid, Contribution numérique à l’étude hydrodynamique et thermique des écoulements turbulents induits par une turbine radiale en cuve agitée, Int. J. Therm. Sci. 40 (2001) 753–772 [CrossRef] [Google Scholar]
  10. G. Delaplace, C. Torrez, J.C. Leuliet, N. Belaubre, C. André, Experimental and CFD simulation of heat transfer to highly viscous fluids in an agitated vessel equipped with a non standard helical ribbon impeller, Trans. IChemE 79 Part A (2001) 927–937 [Google Scholar]
  11. M. Tutar, F. Erdogdu, Numerical simulation for heat transfer and velocity field characteristics of two-phase flow systems in axially rotating horizontal cans, J. Food Eng. 111 (2012) 366–385 [CrossRef] [Google Scholar]
  12. F. Erdogdu, M. Tutar, A computational study for axial rotation effects on heat transfer in rotating cans containing liquid water, semi-fluid food system and headspace, Int. J. Heat Mass Trans. 55 (2012) 3774–3788 [CrossRef] [Google Scholar]
  13. T.C. Papanastasiou, Flows of materials with yield, J. Rheology 31 (1987) 385–404 [CrossRef] [Google Scholar]
  14. S.V. Patankar, Numerical heat transfer and fluid flow, Series in Computational Methods in Mechanics and Thermal Sciences, McGraw Hill, New York, 1980 [Google Scholar]
  15. J.E. Douglass, J. Gunn, A general formulation of alternating-direction implicit methods, Numer. Math. 6 (1964) 428 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.