Open Access
Issue
Mechanics & Industry
Volume 14, Number 4, 2013
Page(s) 317 - 324
DOI https://doi.org/10.1051/meca/2013071
Published online 30 September 2013
  1. J. Panda, D.K. McLaughlin, Experiments on the instabilities of a swirling jet, Phys. Fluids 6 (1994) 263–276 [CrossRef] [Google Scholar]
  2. J.M. Beér, N.A. Chigier, Swirling flow in combustion aerodynamics, Krieger, Malabar, Florida, 1972 [Google Scholar]
  3. M.P. Escudier, J. Keller, Recirculation in swirling flow: a manifestation of vortex breakdown, AIAA J. 23 (1985) 111–116 [Google Scholar]
  4. W. Leuckel, N. Fricker, The characteristics of swirl-stabilized natural gas flames Part I: Different flame types and their relation to flow and mixing patterns, J. Institute Fuel S (1976) 103–112 [Google Scholar]
  5. H.J. Sheen, W.J. Chen, S.Y. Jeng, T.L. Huang, Correlation of swirl number for a radial type swirl generator, Exp. Therm. Fluid Sci. 12 (1996) 444–451 [CrossRef] [Google Scholar]
  6. L. Thielen, K. Hanjalie, H. Janker, R. Manceau, Predictions of flow and heat transfer in multiple impinging jets with an elliptic blending second moment closure, Int. J. Heat Mass Transfer 48 (2004) 1583–1598 [Google Scholar]
  7. M. Rady, E. Arquis, Heat transfer enhancement of multiple impinging slot jets with symmetric exhaust ports and confinement surface protrusions, Appl. Therm. Eng. 26 (2005) 1310–1319 [CrossRef] [Google Scholar]
  8. A. Bouziane, A. Khalfi, S. Laouedj, M. Aminallah, Simulation numérique d’un écoulement réactif swirlé par trois modèles de turbulence, 17ème congrès français de mécanique, Troyes, 2005 [Google Scholar]
  9. M. Braikia, L. Loukarfi, L. Djafer, Caractérisation thermique d’un système multi jets rotationnel, 17ème CFM, Troyes, 2005 [Google Scholar]
  10. A. Aroussi, S. Kucukgokoglan, S.J. Pickering, M. Menacer, Evaluation of four turbulence models in the interaction of multi burners swirling, 4th International conference on multiphase flow, New Orleans, Louisiana, USA, 2001 [Google Scholar]
  11. H. Elbanna, A. Sabbaghj, Interaction of two nonequal jets, A.I.A.A J. 24 (1986) 686–687 [Google Scholar]
  12. T. Kazuya, T. Miyako, L.W. Peter N. Kazuyoshi Swirl and buoyancy effects on mixing performance of baffle-plate-type miniature confined multijet, Int. J. Heat Fluid Flow 31 (2010) 45–56 [CrossRef] [Google Scholar]
  13. S. Hirai, T. Takagi, T. Higashia, Numerical prediction of flow characteristics and retardation of mixing in a turbulent swirling flow, Int. J. Heat Mass Transfer 32 (1989) 121–130 [CrossRef] [Google Scholar]
  14. Z.D. Protić et al., Novel Methods for Axial Fan Impeller Geometry Analysis and Experimental Investigations of the generated Swirl Turbulent Flow, Therm. Sci. 14 (2010) 125–139 [Google Scholar]
  15. A.K. Gupta, D.G. Lilley, N. Syred, Swirl Flows, Abacus Press, London, 1984 [Google Scholar]
  16. Y. Huang, V. Yang, Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion, Progr. Energy Combus. Sci. 35 (2009) 293–364 [Google Scholar]
  17. FLUENT User’s Guide, 2006 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.