Open Access
Mechanics & Industry
Volume 14, Number 6, 2013
Page(s) 453 - 460
Published online 14 February 2014
  1. J.S. Wu, K.C. Tseng, Analysis of micro-scale gas flows with pressure boundaries using direct simulation Monte Carlo method, Comput. Fluids 30 (2001) 711–735 [CrossRef] [Google Scholar]
  2. P. Tabeling, Introduction à la micro-fluidique, Berlin, Paris, 2003 [Google Scholar]
  3. M. Wang, Z. Li, Gas mixing in microchannels using the direct simulation Monte Carlo method, Int. J. Heat Mass Transfer. 49 (2006) 1696–1702 [CrossRef] [Google Scholar]
  4. M. Le, I. Hassan, DSMC Simulation of gas mixing in T-shape micromixer, Appl. Therm. Eng. 27 (2007) 2370–2377 [CrossRef] [Google Scholar]
  5. F. Yan, B. Farouk, Numerical simulation of gas flow and mixing in a microchannel using the direct simulation Monte Carlo method, Microscale Therm. Eng. 6 (2002) 235–251 [CrossRef] [Google Scholar]
  6. G.Em. Karniadakis, A. Beskok, N.R. Aluru, Microflows and nanoflows: fundamentals and simulation, Springer-Verlag, New York, 2005 [Google Scholar]
  7. G.A. Bird, Molecular gas dynamics and the direct simulation of gas flows, Clarendon, Oxford, 1994 [Google Scholar]
  8. L. Szalmas, S. Geofroy, J. Pitakarnnop, S. Colin, D. Valougeorgis, Comparative study between computational and experimental results for binary rarefied gas flows through long microchannels, Microfluid. Nanofluid. 9 (2010) 1103–1114 [CrossRef] [Google Scholar]
  9. F.J. McCormack, Construction of linearized kinetic models for gaseous mixtures and molecular gases, Phys. Fluids 16 (1973) 2095–2105 [Google Scholar]
  10. L. Szalmas, D. Valougeorgis, Rarefied gas flow of binary mixtures through long channels with triangular and trapezoidal cross section, Microfluid. Nanofluid. 9 (2010) 471–487 [CrossRef] [Google Scholar]
  11. C. Buet, A discrete-velocity scheme for the Boltzmann operator of rarefied gas dynamics, Transport Theor. Stat. 25 (1996) 33–60 [CrossRef] [MathSciNet] [Google Scholar]
  12. G.A. Bird, [Google Scholar]
  13. N.G. Hadjiconstantinou, A.L. Garcia, M.Z. Gazant, G. He, Statistical error in particle simulations of hydrodynamic phenomena, J. Comput. Phys. 187 (2003) 274–297 [CrossRef] [MathSciNet] [Google Scholar]
  14. M. Reyhanian Mashhadi, Simulation numérique par la méthode de Monte Carlo (DSMC) et modélisation analytique d’un mélange gazeux dans un micro canal, Thèse, Université Pierre et Marie Curie, Paris, 2011 [Google Scholar]
  15. S.G. Kandlikar, S. Garimella, D. Li, S. Colin, M.R. King, Heat transfer and fluid flow in minichannels and microchannels, Elsevier, Paris, 2005 [Google Scholar]
  16. D. Ameur, Modélisation analytique et simulation numérique par la méthode de Monte Carlo d’un écoulement de gaz dans des micro-canaux, Thèse, Université Pierre et Marie Curie, Paris, 2008 [Google Scholar]
  17. R. Gatignol, C. Croizet, Asymptotic modelling of the flows in micro-channel by using macroscopic balance equations, in: D.A. Levin, I.J. Wysong, A.L. Garci (eds.), Proceedings of 27th International Symposium on Rarefied Gas Dynamics, AIP Conf. Proc. 1333 (2010) 730–735 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.