Open Access
Issue
Mechanics & Industry
Volume 14, Number 6, 2013
Page(s) 413 - 429
DOI https://doi.org/10.1051/meca/2013087
Published online 14 February 2014
  1. R. Richardson, R. Bhatti, A review of research into the role of guide pads in BTA deep-hole machining, J. Mater. Process. Technol. 110 (2001) 61−69 [CrossRef] [Google Scholar]
  2. J. Jung, J. Ni, Prediction of coolant pressure and volume flow rate in the gundrilling process, J. Manuf. Sci. Eng. 125 (2003) 696−702 [CrossRef] [Google Scholar]
  3. J. Frazao, S. Chandrashekhar, M.O.M. Osman, T.S. Sankar, On the design and development of a new BTA Tool to increase productivity and workpiece accuracy in deep hole machining, Int. J. Adv. Manuf. Technol. 1 (1986) 3−23 [CrossRef] [Google Scholar]
  4. B.J. Griffiths, An investigation into the role of the burnishing pads in the deep hole drilling process, Ph.D. thesis of Brunel University (1982) [Google Scholar]
  5. B.J. Griffiths, Deep hole drilling and boring, The production Engineer (1975) 98−105 [Google Scholar]
  6. K. Sakuma, K. Taguchi, A. Katsuki, H. Takeyama, Self guiding action of deep hole drilling tools, CIRP Annals – Manuf. Technol. 30 (1981) 311−315 [Google Scholar]
  7. K. Sakuma, K. Taguchi, A. Katsuki, Study on deep-hole-drilling with solid-boring tool – the burnishing action of guide pads and their influence on hole accuracies, Bull. Japan Soc. Mech. Eng. 23 (1980) 1921−1928 [CrossRef] [Google Scholar]
  8. K. Sakuma, K. Taguchi, S. Kinjo, Study on deep hole drilling with solid boring tools - the effect of tool material on the cutting performance, Bull. Japan Soc. Mech. Eng. 21 (1978) 532−542 [CrossRef] [Google Scholar]
  9. M.C. Shaw, C.J. Oxford, On the drilling of metals II – The torque and thrust in drilling, Trans. ASME 79 (1957) 139−148 [Google Scholar]
  10. W. Theis, O. Webber, C. Weihs, Statistics, dynamics and quality – Improving BTA-deep-hole drilling”, Technical Report 6/2004 of the SFB 475, University of Dortmund (2004) [Google Scholar]
  11. M. Al-Ata, M.T. Hayajneh, An investigation of bell mouthing in precision hole machining with self-piloting tools, Int. J. Adv. Manuf. Technol. 43 (2009) 22−32 [CrossRef] [Google Scholar]
  12. K. Weinert, T. Bruchhaus, Tribological investigations into the operational behavior of self-piloting drilling tools, Wear 225−229 (1999) 925−935 [CrossRef] [Google Scholar]
  13. C.S. Deng, J.H. Chin, Roundness errors in BTA drilling and a model of waviness and lobing caused by resonant forced vibrations of its long drill shaft, J. Manuf. Sci. Eng. 126 (2004) 524−534 [Google Scholar]
  14. C.S. Deng, J.C. Huang, J.H. Chin, Effects of support misalignments in deep-hole drill shafts on hole straightness, Int. J. Mach. Tools Manuf. 41 (2001) 1165−1188 [CrossRef] [Google Scholar]
  15. A. Al-Hamdan, Effect of misalignment on the cutting force signature in drilling, J. Mater. Process. Technol. 124 (2002) 83−91 [CrossRef] [Google Scholar]
  16. C.S. Deng, J.H. Chin, Hole roundness in deep-hole drilling as analysed by Taguchi methods, Int. J. Adv. Manuf. Technol. 25 (2005) 420−426 [CrossRef] [Google Scholar]
  17. N. Guibert, H. Paris, J. Rech, A numerical simulator to predict the dynamical behavior of the self-vibratory drilling head, Int. J. Mach. Tools Manuf. 48 (2008) 644−655 [CrossRef] [Google Scholar]
  18. K. Weinert, O. Webber, C. Peters, On the influence of drilling depth dependent modal damping on chatter vibration in BTA deep hole drilling, CIRP Ann. – Manuf. Technol. 54 (2005) 363−366 [CrossRef] [Google Scholar]
  19. K. Weinert, O. Webber, M. Hüsken, J. Mehnen, W. Theis, Analysis and prediction of dynamic disturbances of the BTA deep hole drilling process, Proceedings of the Third CIRP International Seminar on Intelligent Comput. Manuf. Eng. (2002) 297−302 [Google Scholar]
  20. K. Weinert, O. Webber, M. Hüsken, J. Mehnen, Statistics and time series analyses of BTA deep hole drilling, International Conference on Non-linear Dynamics in Mechanical Processing, 2001 [Google Scholar]
  21. A. Messaoud, C. Weihs, Monitoring a deep hole drilling process by nonlinear time series modeling, J. Sound Vib. 321 (2009) 620−630 [CrossRef] [Google Scholar]
  22. A. Messaoud, C. Weihs, F. Hering, Detection of chatter vibration in a drilling process using multivariate control charts, Comput. Stat. Data Anal. 52 (2008) 3208−3219 [CrossRef] [Google Scholar]
  23. D. Biermann, A. Sacharow, K. Wohlgemuth, Simulation of the BTA deep-hole drilling process, Prod. Eng. Res. Dev. 3 (2009) 339−346 [CrossRef] [Google Scholar]
  24. N. Raabe, O. Webber, W. Theis, Spiralling in BTA deep-hole drilling: models of varying frequencies, From Data and Information Analysis to Knowledge Engineering, Studies in Classification, Data Analysis, and Knowledge Organization (2006) 510−517 [Google Scholar]
  25. V.P. Astakhov, M.O.M. Osman, An analytical evaluation of the cutting forces in self piloting drilling using the model of shear zone with parallel boundaries. Part 1: Theory, International J. Machine Tools Manuf. 36 (1996) 1187−1200 [CrossRef] [Google Scholar]
  26. V.P. Astakhov, M.O.M. Osman, An analytical evaluation of the cutting forces in self piloting drilling using the model of shear zone with parallel boundaries. Part 2: Application, Int. J. Machine Tools Manuf. 36 (1996) 1335−1345 [CrossRef] [Google Scholar]
  27. F. Kea, J. Nib, D.A. Stephenson, Chip thickening in deep-hole drilling, Int. J. Machine Tools Manuf. 46 (2005) 1500−1507 [Google Scholar]
  28. F. Kea, J. Nib, D.A. Stephenson, Continuous chip formation in drilling, Int. J. Machine Tools Manuf. 45 (2005) 1652−1658 [CrossRef] [Google Scholar]
  29. C.H. Gao, K. Cheng, D. Kirkwood, The investigation on the machining process of BTA deep hole drilling, J. Mater. Process. Technol. 107 (2000) 222−227 [CrossRef] [Google Scholar]
  30. J. Thil, C. Barlier, B. Haddag, Introduction au forage profond : Technologies et étude du procédé, Magazine Equip’Prod 36 (2012) [Google Scholar]
  31. R. Komanduri, R.H. Brown, On the mechanics of chip segmentation in machining, J. Eng. Industry 103 (1981) 33−51 [Google Scholar]
  32. J. Barry, G. Byrne, D. Lennon, Observations on chip formation and acoustic emission in machining Ti-6Al-4V Alloy, Int. J. Mach. Tools Manuf. 41 (2001) 1055−1070 [CrossRef] [Google Scholar]
  33. J.D. Puerta Velásquez, B. Bolle, P. Chevrier, G. Geandier, A. Tidu, Metallurgical study on chips obtained by high speed machining of a Ti–6 wt.%Al–4 wt.%V alloy, Mater. Sci. Eng. A 452−453 (2007) 469−474 [Google Scholar]
  34. Y. Wang, B. Li, G.Tu, The study on the chip formation and wear behavior for drilling forged steel S48CS1V with TiAlN-coated gun drill, Int. J. Refract. Metals Hard Mater. 30 (2012) 200−207 [CrossRef] [Google Scholar]
  35. S. Atlati, B. Haddag, M. Nouari, M. Zenasni, Analysis of a new Segmentation Intensity Ratio “SIR” to characterize the chip segmentation process in machining ductile metals, Int. J. Mach. Tools Manuf. 51 (2011) 687−700 [Google Scholar]
  36. S. Kouadri, K. Necib, S. Atlati, B. Haddag, M. Nouari, Quantification of the chip segmentation in metal machining: Application to machining the aeronautical aluminium alloy AA2024-T351 with cemented carbide tools WC-Co. Int. J. Mach. Tools Manuf. 64 (2013) 102−113 [Google Scholar]
  37. M. Cotterell, G. Byrne, Characterisation of chip formation during orthogonal cutting of titanium alloy TI-6Al-4V, CIRP J. Manuf. Sci. Technol. 1 (2008) 81−85 [CrossRef] [Google Scholar]
  38. M.A. Davies, T.J. Burns, C.J. Evans, On the dynamics of chip formation in machining hard metals, Ann. ClRP 46 (1997) 25−30 [CrossRef] [Google Scholar]
  39. M.A. Davies, Y. Chou, C.J. Evans, On chip morphology, tool wear and cutting mechanics in finish hard turning, Ann. ClRP 45 (1996) 77−82 [Google Scholar]
  40. L. Zhanqiang, S. Guosheng, Characteristics of chip evolution with elevating cutting speed from low to very high, Int. J. Mach. Tools Manuf. 54−55 (2012) 82−85 [CrossRef] [Google Scholar]
  41. S. Sun, M. Brandt, M.S. Dargusch, Characteristics of cutting forces and chip formation in machining of titanium alloys, Int. J. Mach. Tools Manuf. 49 (2009) 561–568 [CrossRef] [Google Scholar]
  42. A. Akhavan Farid, S. Sharif, M.H. Idris, Chip morphology study in high speed drilling of Al–Si alloy, Int. J. Adv. Manuf. Technol. 57 (2011) 555−564 [CrossRef] [Google Scholar]
  43. J. Barry, G. Byrne, The mechanisms of chip formation in machining hardened steels, J. Manuf. Sci. Eng. 124 (2002) 528−535 [CrossRef] [Google Scholar]
  44. A.E. Bayoumi, J.Q. Xie, Some metallurgical aspects of chip formation in cutting Ti–6 wt%Al–4 wt%V alloy, Mater. Sci. Eng. A 190 (1995) 173−180 [Google Scholar]
  45. M.C. Shaw, A. Vyas, The mechanism of chip formation with hard turning steel, CIRP Ann. Manuf. Technol. 47 (1998) 77−82 [CrossRef] [Google Scholar]
  46. V.P. Astakhov, S. Shvets, The assessment of plastic deformation in metal cutting, J. Materials Process. Technol. 146 (2004) 193−202 [CrossRef] [Google Scholar]
  47. SANDVIK Coromant, Deep hole drilling, Product catalogue and application guide (2003) [Google Scholar]
  48. S.R. Bordet, B. Tanguy, J. Besson, S. Bugat, D. Moinereau, A. Pineau, Cleavage fracture of RPV steel following warm pre-stressing: micromechanical analysis and interpretation through a new model, Fatigue Fract. Engng. Mater. Struct. 29 (2006) 799−816 [CrossRef] [Google Scholar]
  49. M. Hajjaj, Propagation dynamique et arrêt de fissure de clivage dans un acier bainitique, Ph.D. thesis of Ecole Centrale Paris 2006 [Google Scholar]
  50. M. Hajjaj, C. Berdin, P. Bompard, S. Bugat, Analyses of cleavage crack arrest experiments: influence of specimen vibration, Eng. Fracture Mech. 75 (2008) 1156−1170 [CrossRef] [Google Scholar]
  51. B. Vereecke, Une analyse probabiliste du comportement d’une famille d’aciers pour cuve de REP en cas d’accident grave, Ph.D. thesis of Paris VI University, 2004 [Google Scholar]
  52. V. Le Corre, Etude de la compétition déchirure ductile/rupture fragile : application a la tenue mecanique des tubes en acier C-Mn et de leurs joints soudes, Ph.D. thesis of Ecole Centrale Lille, 2006 [Google Scholar]
  53. E. Merchant, Basic mechanics of the metal cutting process, J. App. Mech., Trans. ASME 66 (1944) A-168 [Google Scholar]
  54. C. Barlier, Usinage des matériaux métalliques, Memotech Plus, Industrialisation & Mécanique, Editions Casteilla, ISBN: 978−2-7135−2703−6 2010, ISSN: 0986−4024 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.