Open Access
Mechanics & Industry
Volume 15, Number 5, 2014
Page(s) 413 - 426
Published online 28 August 2014
  1. R.R. Boyer, R.D. Briggs, J. Mater. Eng. Performance 14 (2005) 681–685 [Google Scholar]
  2. J. Panter, A. Dallz, K.-H. Rendigs, N. Hellard, W. Gerhard, Influence of thermo-mechanical treatments on microstructure and mechanical properties of near beta titanium alloy VST 55531, Annual Meeting of the Materials Society, 2005 [Google Scholar]
  3. S.L. Semiatin, V. Seetharaman, A.K. Ghosh, Plastic flow, microstructure evolution, and defect formation during primary hot working of titanium and titanium aluminide alloys with lamellar colony microstructures (1999), Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 357 (1756) 1487−1512 [CrossRef] [Google Scholar]
  4. M. Jackson, R. Dashwood, L. Christodoulou, H. Flower, The microstructural evolution of near beta alloy Ti-10V-2Fe-3Al during subtransus forging, Metall. Mater. Trans. A: Phys. Metall. Mater. Sci. 36 (2005) 1317–1327 [CrossRef] [Google Scholar]
  5. M. Jackson, Application of novel technique to examine thermomechanical processing of near beta alloy Ti-10V-2Fe-3Al, Mater. Sci. Technol. 16 (2000) 1437−1444 [Google Scholar]
  6. V.V. Balasubrahmanyam, Y.V.R.K. Prasad, Deformation behaviour of beta titanium alloy Ti-10V-4.5Fe-1.5Al in hot upset forging, Mater. Sci. Eng. A 336 (2002) 150–158 [CrossRef] [Google Scholar]
  7. N.G. Jones, R.J. Dashwood, D. Dye, M. Jackson, Mater. Sci. Eng. A 490 (2008) 369–377 [CrossRef] [Google Scholar]
  8. J.I. Hughes, A.R.C. Sharman, K. Ridgway, The effect of cutting tool material and edge geometry on tool life and workpiece surface integrity, Proc. Instit. Mech. Eng. B: J. Eng. Manufact. 220 (2006) 93–107 [CrossRef] [Google Scholar]
  9. E.O. Ezugwu, Z.M. Wang, Titanium alloys and their machinability – A review, J. Mater. Proc. Technol. 68 (1997) 262–274 [Google Scholar]
  10. M.V. Ribeiro, M.R.V. Moreira, J.R. Ferreira, Optimization of titanium alloy (6Al-4V) machining, J. Mater. Proc. Technol. 143-144 (2003) 458–463 [CrossRef] [Google Scholar]
  11. M. Lee, Proc. Symp. Advances in processing Methods for Titanium, Louisville Kentucky, AIME, 1981, pp. 275–287 [Google Scholar]
  12. P.C. Wanigarathne, A.D. Kardekar, O.W. Dillon, G. Poulachon, I.S. Jawahir, Progressive tool-wear in machining with coated grooved tools and its correlation with cutting temperature, Wear 259 (2005) 1215–1224 [CrossRef] [Google Scholar]
  13. Y.S. Touloukian, Thermophysical Properties of Matter – Metallic Elements and Alloys, John Wiley & Sons Ltd, NY, 1971 [Google Scholar]
  14. H.A. Abdel-Aal, M. Nouari, M. El Mansori, Influence of thermal conductivity on wear when machining titanium alloys, Trib. Int. 42 (2009) 359–372 [CrossRef] [Google Scholar]
  15. H.A. Abdel-Aal, M. Nouari, M. El Mansori, Tribo-energetic correlation of tool thermal properties to wear of WC-Co inserts in high speed dry machining of aeronautical grade titanium alloys, Wear 266 (2009) 432–444 [CrossRef] [Google Scholar]
  16. N Wiser, Electrical resistivity of metals, in Encyclopedia of Physical Science and Technology, Academic Press, 1992, Vol. 5, p. 445 [Google Scholar]
  17. H.A. Abdel-Aal, M. El Mansori, Influence of high pressure thermal behavior on friction-induced material transfer during dry machining of titanium, proc 14th Conference of (European Scientific Association for Material Forming) ESAFORM, Queen’s University Belfast, Northern Ireland, April 27th to 29th, 2011, AIP Conf. Proc. 1353 (2011) 1806–1811 [CrossRef] [Google Scholar]
  18. H.A. Abdel-Aal, M. El Mansori, Dry reciprocating sliding of WC-Co and commercially pure tungsten on titanium under the influence of biasing dc-current, 13th International Conference on Metrology and Properties of Engineering Surfaces 2011 METPROP, National Physical Laboratory 12–14 April 2011, pp. 126–130 [Google Scholar]
  19. M.Y. Friedman, E. Lenz, The effect of thermal conductivity of tool material on cutting forces and crater wear rate, Wear 25 (1973) 39–44 [CrossRef] [Google Scholar]
  20. Lenz and M.Y. Friedman, Investigation of the tool-chip contact length in metal cutting, Int. J. Mach. Tool Des. Res. 10 (1970) 401–416 [CrossRef] [Google Scholar]
  21. N.G. Jones, R.J. Dashwood, D. Dye, M. Jackson, Mater. Sci. Eng. A 490 (2008) 369–377 [CrossRef] [Google Scholar]
  22. P.S. Balog, R.A. Secco, High pressure and temperature behaviour of electrical resistivity of hcp metals Ti, Zr and Gd, J. Phys.: Condens. Matter 11 (1999) 1273 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.