Open Access
Issue
Mechanics & Industry
Volume 15, Number 5, 2014
Page(s) 443 - 448
DOI https://doi.org/10.1051/meca/2014033
Published online 20 June 2014
  1. M. Moumnassi, S. Belouettar, E. Béchet, S.P. Bordas, D. Quoirin, M. Potier-Ferry, Finite element analysis on implicitly defined domains: An accurate representation based on arbitrary parametric surfaces, Comput. Methods Appl. Mech. Eng. 200 (2011) 774–796 [CrossRef] [Google Scholar]
  2. A. Düster, J. Parvizian, Z. Yang, E. Rank, The finite cell method for three-dimensional problems of solid mechanics, Comput. Methods Appl. Mech. Eng. 197 (2008) 3768−3782 [CrossRef] [Google Scholar]
  3. K. Dréau, N. Chevaugeon, N. Moës, Studied x-fem enrichment to handle material interfaces with higher order finite element, Comput. Methods Appl. Mecha. Eng. 199 (2010) 1922–1936 [CrossRef] [Google Scholar]
  4. G. Legrain, N. Chevaugeon, K. Dréau, High order x-fem and levelsets for complex microstructures: Uncoupling geometry and approximation, Comput. Methods Appl. Mech. Eng. 241-244 (2012) 172–189 [CrossRef] [Google Scholar]
  5. J.P. Pereira, C.A. Duarte, D. Guoy, X. Jiao, hp-generalized fem and crack surface representation for non-planar 3-d cracks, Int. J. Numer. Methods Eng. 77 (2009) 601–633 [CrossRef] [Google Scholar]
  6. M. Kästner, S. Müller, J. Goldmann, C. Spieler, J. Brummund, V. Ulbricht, Higher-order extended fem for weak discontinuities-level set representation, quadrature and application to magneto-mechanical problems, Int. J. Numer. Methods Eng. 93 (2013) 1403–1424 [CrossRef] [Google Scholar]
  7. E. Nadal, J.J. Ródenas, J. Albelda, M. Tur, J.E. Tarancón, F.J. Fuenmayor, Efficient finite element methodology based on cartesian grids: Application to structural shape optimization, Abstract and Applied Analysis 2013 (2013) 953786 [CrossRef] [Google Scholar]
  8. N. Moës, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng. 46 (1999) 131–150 [Google Scholar]
  9. T. Strouboulis, K. Copps, I. Babuška, The generalized finite element method, Comput. Methods Appl. Mech. Eng. 190 (2001) 4081–4193 [CrossRef] [Google Scholar]
  10. M. Joulaian, A. Düster, Local enrichment of the finite cell method for problems with material interfaces, Comput. Mech. 52 (2013) 741–762 [CrossRef] [Google Scholar]
  11. B.A. Benowitz, H. Waisman, A spline-based enrichment function for arbitrary inclusions in extended finite element method with applications to finite deformations, Int. J. Numer. Methods Eng. 95 (2013) 361–386 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.