Open Access
Issue
Mechanics & Industry
Volume 15, Number 5, 2014
Page(s) 435 - 442
DOI https://doi.org/10.1051/meca/2014050
Published online 08 August 2014
  1. T. Aoyama, Development of a Mixture Supply System for Machining with Minimal Quantity Lubrication, CIRP Ann. Manuf. Technol. 51 (2002) 289−292 [CrossRef] [Google Scholar]
  2. N.R. Dhar, M.W. Islam, M.A.H. Mithu, The influence of minimum quantity of lubrication (MQL) on cutting temperature, chip and dimensional accuracy in turning AISI 1040 steel, J. Mater. Process. Technol. 171 (2006) 93−99 [CrossRef] [Google Scholar]
  3. L.N. Lopez de Lacalle, C. Angulo, A. Lamikiz, J.A. Sanchez, Experimental and numerical investigation on the effect of spray cutting fluids in high speed milling, J. Mater. Process. Technol. 172 (2006) 11−15 [CrossRef] [Google Scholar]
  4. C.R. Vikram Kumar, P. Kesavan Nair, B. Ramamoorthy, Performance of TiCN and TiAlN tools in machining hardened steel under dry, wet and minimum fluid application, Int. J. Machining Machinability Mater. 3 (2008) 133−143 [CrossRef] [Google Scholar]
  5. A. Attanasio, M. Gelfi, C. Giardini, C. Remino, Minimal quantity lubrication in turning: effect on tool wear, Wear 260 (2006) 333−338 [CrossRef] [Google Scholar]
  6. Y. Kamata, T. Obikawa, High speed MQL finish turning of inconel 718 with different coated tools, J. Mater. Process. Technol. 192 (2007) 281−286 [CrossRef] [Google Scholar]
  7. T. Obikawa, Y. Kamata, Y. Asano, K. Nakayama, A.W. Otieno, Micro-liter lubrication machining of inconel 718, Int. J. Machine Tools Manuf. 48 (2008) 1599–1604 [CrossRef] [Google Scholar]
  8. T. Obikawa, Y. Kamata, J. Shinozuka, High speed grooving applying MQL, Int. J. Machine Tools Manuf. 46 (2006) 1854−1861 [CrossRef] [Google Scholar]
  9. M. Emami, M.H. Sadeghi, A.A.D. Sarhan, Investigating the effects of liquid atomization and delivery parameters of minimum quantity lubrication on the grinding process of Al2O3 engineering ceramics, J. Manuf. Process. 15 (2013) 374−388 [CrossRef] [Google Scholar]
  10. A. Gandarias, L.N. Lopez de Lacalle, X. Aizpitarte, A. Lamikiz, Study of the performance of the turning and drilling of the austenitic stainless steels using two coolant techniques, Int. J. Machining Machinability Mater. 3 (2008) 1−17 [CrossRef] [Google Scholar]
  11. R.P. Zeilmann, W.L. Weingaertner, Analysis of temperature during drilling of Ti6A14V with minimal quantity of lubricant, J. Mater. Process. Technol. 179 (2006) 124−127 [CrossRef] [Google Scholar]
  12. M. Rahman, A.S. Kumar, M.U. Salam, Experimental evaluation on the effect of minimal quantities of lubricant in milling, Int. J. Machine Tool Manuf. 42 (2002) 539−547 [CrossRef] [Google Scholar]
  13. X.X. Li, C.H. Liu, D.Y.C. Leung, K.M. Lam, Recent progress in CFD modeling of wind field and pollutant transport in street canyons, Atmospheric Environment 40 (2006) 5640−5658 [CrossRef] [Google Scholar]
  14. A. Kitagawa, Y. Murai, F. Yamamoto, Two-way coupling of Eulerian-Lagrangian model for dispersed multiphase flows using filtering functions, Int. J. Multiphase Flow 27 (2001) 2129−2153 [CrossRef] [Google Scholar]
  15. V.V. Buwa, D.S. Deo, V.V. Ranade, Eulerian-Lagrangian simulations of unsteady gas-liquid flows in bubble columns, Int. J. Multiphase Flow 32 (2006) 864−885 [CrossRef] [Google Scholar]
  16. G.F. Naterer, M. Milanez, G. Venn, On the Lagrangian/Eulerian modeling of dispersed droplet inertia: Internal circulation transition, J. Colloid Interface Sci. 291 (2005) 577−584 [CrossRef] [PubMed] [Google Scholar]
  17. E. Peiner, M. Balke, L. Doering, Form measurement inside fuel injector nozzle spray holes, Microelectron. Eng. 86 (2009) 984−986 [CrossRef] [Google Scholar]
  18. D.G.E. Grigoriadis, S.C. Kassinos, Lagrangian particle dispersion in turbulent flow over a wall mounted obstacle, Int. J. Heat Fluid Flow 30 (2009) 462−470 [CrossRef] [Google Scholar]
  19. Sh. Subramaniam, Lagrangian-Eulerian methods for multiphase flows, Prog. Energy Comb. Sci. 39 (2013) 215−245 [CrossRef] [Google Scholar]
  20. M.J. Andrews, P.J. O’Rourke, The multiphase particle-in-cell (MP-PIC) method for dense particulate flows, Int. J. Multiphase Flow 22 (1996) 379−402 [CrossRef] [Google Scholar]
  21. A. Duchosal, R. Serra, R. Leroy, Static numerical simulation of oil mist particle size effects on a range of internal channel geometries of a cutting tool used in MQL strategy, Int. J. Eng. Sci. Innov. Technol. 3 (2014) 43−59 [Google Scholar]
  22. A. Duchosal, R. Leroy, L. Vecellio, C. Louste, N. Ranganathan, An experimental investigation on oil mist characterization used in MQL milling process, Int. J. Adv. Manuf. Technol. 66 (2012) 1003−1014 [CrossRef] [Google Scholar]
  23. A.B. Taylor, Physicochemical processes and the formulation of dissymmetry models, Ph.D. Thesis, The Pennsylvania State University, 2006 [Google Scholar]
  24. Y. Zhao, B.B. Lieber, Steady inspiratory flow in a model symmetric bifurcation, Trans. ASME 116 (1994) 488−496 [Google Scholar]
  25. Y. Liu, R.M.C. So, C.H. Zhang, Modeling the bifurcating flow in a human lung airway, J. Biomech. 35 (2002) 465−473 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.