Open Access
Issue
Mechanics & Industry
Volume 15, Number 6, 2014
Page(s) 557 - 568
DOI https://doi.org/10.1051/meca/2014079
Published online 21 November 2014
  1. S. Paolucci, D. Chenoweth, Natural convection in shallow enclosures with differentially heated end walls, J. Heat Transfer 110 (1988) 625–634 [CrossRef] [Google Scholar]
  2. J. Drummond, S. Korpela, Natural convection in a shallow cavity, J. Fluid Mech. 182 (1987) 543–564 [CrossRef] [Google Scholar]
  3. S. Roy, T. Basak, Finite element analysis of natural convection flows in a square cavity with non-uniformly heated wall(s), Int. J. Eng. Sci. 43 (2005) 668–680 [CrossRef] [Google Scholar]
  4. L.F. Jin, K.W. Tou, C.P. Tso, Effects of rotation on natural convection cooling from three rows of heat sources in a rectangular cavity, Int. J. Heat Mass Transfer 48 (2005) 3982–3994 [CrossRef] [Google Scholar]
  5. T. Basak, S. Roy, Amit Singh, B. Pandey, Natural convection flow simulation for various angles in a trapezoidal enclosure with linearly heated side wall(s), Int. J. Heat Mass Transfer 52 (2009) 4413–4425 [CrossRef] [Google Scholar]
  6. R.S. Kaluri, R. Anandalakshmi, T. Basak, Bejan’s heatline analysis of natural convection in right-angled triangular enclosures, Effects of aspect-ratio and thermal boundary conditions, Int. J. Thermal Sci. 49 (2010) 1576–1592 [CrossRef] [Google Scholar]
  7. S.C. Saha, J.C. Patterson, C. Lei, Natural convection boundary-layer adjacent to an inclined flat plate subject to sudden and ramp heating, Int. J. Thermal Sci. 49 (2010) 1600–1612 [Google Scholar]
  8. C.L. Chen, C.H. Cheng, Numerical predictions of natural convection with liquid fluids contained in an inclined arc-shaped enclosure, Int. Commun. Heat Mass Transfer 39 (2012) 209–215 [CrossRef] [Google Scholar]
  9. S. Mahmud, P.K. Das, N. Hyder, A.K.M. Sadrul Islam, Free convection in an enclosure with vertical wavy walls, Int. J. Thermal Sci. 41 (2002) 440–446 [CrossRef] [Google Scholar]
  10. S. Mahmud, P.K. Das, N. Hyder, A.K.M. Sadrul Islam, Laminar free convection and entropy generation inside an inclined wavy enclosure, Int. J. Thermal Sci. 42 (2003) 1003–1012 [CrossRef] [Google Scholar]
  11. P.K. Das, S. Mahmud, Numerical investigation of natural convection inside a wavy enclosure, Int. J. Thermal Sci. 42 (2003) 397–406 [CrossRef] [Google Scholar]
  12. A. Dalal, M.K. Das, Laminar natural convection in an inclined complicated cavity with spatially variable wall temperature, Int. J. Heat Mass Transfer 48 (2005) 2986–3007 [CrossRef] [Google Scholar]
  13. E.H. Ridouane, A. Campo, Free convection performance of circular cavities having two active curved vertical sides and two inactive curved horizontal sides, Appl. Thermal Eng. 26 (2006) 2409–2416 [CrossRef] [Google Scholar]
  14. L. Adjlout, O. Imine, A. Azzi, M. Belkadi, Laminar natural convection in an inclined cavity with a wavy wall, Int. J. Heat Mass Transfer 45 (2002) 2141–2152 [CrossRef] [Google Scholar]
  15. M. Aounallah, Y. Addad, S. Benhamadouche, O. Imine, L. Adjlout, D. Laurence, Numerical investigation of turbulent natural convection in an inclined square cavity with a hot wavy wall, Int. J. Heat Mass Transfer 50 (2007) 1683–1693 [CrossRef] [Google Scholar]
  16. S. Saha, T. Sultana, G. Saha, M.M. Rahman, Effects of discrete isoflux heat source size and angle of inclination on natural convection heat transfer flow inside a sinusoidal corrugated enclosure, Int. Commun. Heat Mass Transfer 35 (2008) 1288–1296 [CrossRef] [Google Scholar]
  17. S.H. Hussain, M.Y. Jabbar, A.S. Mohamad, Influence of presence of inclined centered baffle and corrugation frequency on natural convection heat transfer flow of air inside a square enclosure with corrugated side walls, Int. J. Thermal Sci. 50 (2011) 1799–1808 [CrossRef] [Google Scholar]
  18. M.A. Mahmoud, A.E. Ben-Nakhi, Neural networks analysis of free laminar convection heat transfer in a partitioned enclosure, Commun. Nonlin. Sci. Numer. Simul. 12 (2007) 1265–1276 [CrossRef] [Google Scholar]
  19. M. Bakkas, M. Hasnaoui, A. Amahmid, Natural convective flows in a horizontal channel provided with heating isothermal blocks: Effect of the inter blocks spacing, Energy Conversion and Management 51 (2010) 296–304 [CrossRef] [Google Scholar]
  20. W. Gao, W. Lin, T. Liu, C. Xia, Analytical and experimental studies on the thermal performance of cross-corrugated and flat-plate solar air heaters, Appl. Energy 84 (2007) 425–441 [CrossRef] [Google Scholar]
  21. Y. Varol, H.F. Oztop, Free convection in a shallow wavy enclosure, Int. Commun. Heat Mass Transfer 33 (2006) 764–771. [CrossRef] [Google Scholar]
  22. Y. Varol, H.F. Oztop, A comparative numerical study on natural convection in inclined wavy and flat-plate solar collectors, Building and Environment 43 (2008) 1535–1544 [CrossRef] [Google Scholar]
  23. C. Chen, C. Cheng, Predictions of buoyancy-induced flow in various across-shape concave enclosures, Int. Commun. Heat Mass Transfer 38 (2011) 442–448 [CrossRef] [Google Scholar]
  24. D. Greig, K. Siddiqui, P. Karava, An experimental investigation of the flow structure over a corrugated waveformin a transpired air collector, Int. J. Heat Fluid Flow 38 (2012) 133–144 [CrossRef] [Google Scholar]
  25. R. Nasrin, S. Parvin, M.A. Alim, Effect of Prandtl number on free convection in a solar collector filled with nanofluid, Proc. Eng. 56 (2013) 54–62 [CrossRef] [Google Scholar]
  26. F.Z. Ferahta, S. Bougoul, D. Ababsa, C. Abid, Numerical Study of the Convection in the Air Gap of a Solar Collector, Energy Proc. 6 (2011) 176–184 [CrossRef] [Google Scholar]
  27. D. Greig, K. Siddiqui, P. Karava, The influence of surface heating on the flow dynamics within a transpired air collector, Int. J. Heat Mass Transfer 56 (2013) 390–402 [CrossRef] [Google Scholar]
  28. P.-C. Huang, C.-C. Chen, H.-Y. Hwang, Thermal enhancement in a flat-plate solar water collector by flow pulsation, and metal-foam blocks, Int. J. Heat Mass Transfer 61 (2013) 696–720 [CrossRef] [Google Scholar]
  29. C. Balaji, S.P. Venkateshan, Interaction of surface radiation with free convection in a square cavity, Int. J. Heat Fluid Flow 14 (1993) 260–267 [Google Scholar]
  30. C. Balaji, S. Venkateshan, Correlations for free convection and surface radiation in a square cavity, Int. J. Heat Fluid Flow 15 (1994) 249–251 [Google Scholar]
  31. R.A. Kuyper, T.H.H. Van, D. Meer, C.J. Hoogendoorn, R.A.W. Henkes, Numerical study of laminar and turbulent natural convection in an inclined square cavity, Int. J. Heat Mass Transfer 36 (1993) 2899–2911 [CrossRef] [Google Scholar]
  32. M. Akiyama, Q.P. Chong, Numerical analysis of natural convection with surface radiation in a square enclosure, Numer. Heat Transfer Part A 31 (1997) 419–433 [Google Scholar]
  33. N. Ramesh, S. Venkateshan, Effect of surface radiation on natural convection in a square enclosure, J. Thermophys. Heat Transfer 13 (1999) 299–301 [CrossRef] [Google Scholar]
  34. G. Desrayaud, G. Lauriat, A numerical study of natural convection in partially open enclosures with a conducting side-wall, Transfer ASME J. Heat Transfer 126 (2004) 76–83 [CrossRef] [Google Scholar]
  35. S.N. Sing, S.P. Venkateshan, Numerical study of natural convection with surface radiation in side vented open cavities, Int. J. Therm. Sci. 43 (2004) 865–876 [Google Scholar]
  36. H. Wang, S. Xin, P. Le Quéré, Étude numérique du couplage de la convection naturelle avec le rayonnement de surfaces en cavité carrée remplie d’air, C. R. Acad. Sci. Mécanique 334 (2006) 48–57 [Google Scholar]
  37. A. Mezrhab, M. Jami, M. Bouzidi, P. Lallemand, Analysis of radiation-natural convection in a divided enclosure using lattice Boltzmann method, Computers and Fluids 36 (2007) 423–434 [Google Scholar]
  38. R. Alvarado, J. Xamán, J. Hinojosa, G. Álvarez, Interaction between natural convection and surface thermal radiation in tilted slender cavities, Int. J. Thermal Sci. 47 (2008) 355–368 [Google Scholar]
  39. M. Rabhi, H. Bouali, A. Mezrhab, Radiation natural convection heat transfer in inclined rectangular enclosures with multiple partitions, Energy Conversion and Management 49 (2008) 1228–1236 [CrossRef] [Google Scholar]
  40. G.V. Kuznetsov, M.A. Sheremet, Conjugate natural convection with radiation in an enclosure, Int. J. Heat Mass Transfer 52 (2009) 2215–2223 [Google Scholar]
  41. H.F. Nouanegue, A. Muftuoglu, E. Bilgen, Heat transfer by natural convection, conduction and radiation in an inclined square enclosure bounded with a solid wall, Int. J. Thermal Sci. 48 (2009) 871–880 [CrossRef] [Google Scholar]
  42. B. Mondal, X. Li, Effect of volumetric radiation on natural convection in a square cavity using lattice Boltzmann method with non-uniform lattices, Int. J. Heat Mass Transfer 53 (2010) 4935–4948 [CrossRef] [Google Scholar]
  43. V. Vivek, Anil Kumar Sharma, C. Balaji, Interaction effects between laminar natural convection and surface radiation in tilted square and shallow enclosures, Int. J. Therm. Sci. 60 (2012) 70–84 [Google Scholar]
  44. R. Li, M. Bousetta, E. Chénier, G. Lauriat, Effect of surface radiation on natural convective flows and onset of flow reversal in asymmetrically heated vertical channels, Int. J. Therm. Sci. 65 (2013) 9–27 [CrossRef] [Google Scholar]
  45. H.C. Hottel, A.F. Saroffim, Radiative Heat Transfer, Mc Graw Hill, New York, 1967 [Google Scholar]
  46. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing, New York, 1980 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.