Open Access
Issue
Mechanics & Industry
Volume 16, Number 2, 2015
Article Number 201
Number of page(s) 13
DOI https://doi.org/10.1051/meca/2014071
Published online 20 October 2014
  1. M. Rychcik, M. Skyllas-Kazacos, Characteristics of a new all-vanadium redox flow battery, J. Power Sources 22 (1987) 59–67 [CrossRef] [Google Scholar]
  2. R.M. Dell, D.A.J. Rand, Energy storage a-key technology for global energy sustainability, J. Power Sources 100 (2001) 2–17 [CrossRef] [Google Scholar]
  3. L. Jeorissen, J. Garche, C.H. Fabjan, G. Tomazic, Possible use of vanadium redox-flow batteries for energy storage in small grids and stand-alone photovoltaic systems, J. Power Sources 127 (2004) 98–104 [CrossRef] [Google Scholar]
  4. Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, L.P. Lemmon, J. Liu, Electrochemical energy storage for green grid, Chem. Rev. 111 (2011) 3577–3613 [CrossRef] [PubMed] [Google Scholar]
  5. C. Ponce de Leon, A. Frias-Ferrer, J. Gonzalez Garcia, D.A. Szanto, F.C. Walsh, Redox flow cells for energy conversion, J. Power Sources 160 (2006) 716–732 [CrossRef] [Google Scholar]
  6. G. Kear, A.A. Shah, F.C. Walsh, Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects, Int. J. Energy Res. 36 (2011) 1105–1120 [CrossRef] [Google Scholar]
  7. M. Skyllas-Kazacos, C. Menicats, Proceedings of the 19thIntelec Meeting, IEEE Communication Society, Melbourne, Australia, 1997, pp. 463–471 [Google Scholar]
  8. The VRB Energy Storage System (VRB-ESS) the multiple benefits of integrating the VRB-ESS with wind energy - Case studies in MWH applications, Technical report, VRB Power Systems Inc., http://wenku.baidu.com/view/4edece768e9951e79b8927a8, 2007 [Google Scholar]
  9. M. Skyllas-Kazacos, R.G. Robbins, The All Vanadium Redox Battery, U.S. Patent No. 849 094, 1986 [Google Scholar]
  10. E. Sum, M. Skyllas-Kazacos, A study of V(II)/V(III) redox couple for redox flow cell applications, J. Power Sources 15 (1985) 179–190 [CrossRef] [Google Scholar]
  11. M. Skyllas-Kazacos, F. Grossmith, Effcient vanadium redox flow cell, J. Electrochem. Soc. 134 (1987) 2950–2953 [CrossRef] [Google Scholar]
  12. J. Newman, W. Tiedemann, Simulation of recombinant lead-acid batteries, J. Electrochem. Soc. 144 (1997) 2053–2061 [CrossRef] [Google Scholar]
  13. C.Y. Wang, W.B. Gu, B.Y. Liaw, Micro-Macroscopic coupled modeling of batteries and fuel cells, J. Electrochem. Soc. 145 (1998) 3407–3417 [CrossRef] [Google Scholar]
  14. A. Weber, M. Mench, J. Meyers, P. Ross, J. Gostick, Q. Liu, Redox flow batteries: a review, J. Appl. Electrochem. 41 (2011) 1137–1164 [CrossRef] [Google Scholar]
  15. J. Klíma, A. Frias-Ferrer, J. González-García, J. Ludvík, V. Sáez, J. Iniesta, Physical aspects of Sono(electro)chemistry: Distribution of intensity of ultrasound COST WG 2 Workshop, Oxford, UK, 2005 [Google Scholar]
  16. J. Gonzalez-Garcia, V. Montiel, A. Aldaz, J.A. Conesa, J.R. Perez, G. Codina, Hydrodynamic behavior of filter press electrochemical reactor with carbon felt as three dimensional electrode, Ind. Eng. Chem. Res. 37 (1998) 4501–4511 [CrossRef] [Google Scholar]
  17. X. Ma, H. Zhang, F. Xing, A three dimensional mode for negative half-cell of the vanadium redox flow battery, Electrochim. Acta 58 (2011) 238–246 [CrossRef] [Google Scholar]
  18. M. Secanell, J. Wishartb, P. Dobson, Computational design and optimization of fuel cells and fuel cell systems: A review, J. Power Sources 196 (2011) 3690–3704 [CrossRef] [Google Scholar]
  19. M. Miyabayashi, T. Tayama, Y. Kageyama, H. Oyama, Vanadium Redox Battery Energy Storage and Power Generation System Incorporating And Optimizing Diesel Engine Generators, U.S. Patent 5, 851, 694 [Google Scholar]
  20. C. Bengoa, A. Montillet, P. Legentilhomme, J. Legrand, Flow visualization and modeling of a filter-press type electrochemical reactor, J. Appl. Electrochem. 27 (1997) 1313–1322 [CrossRef] [Google Scholar]
  21. A.A. Wragg, A.A. Leontaritis, Local mass transfer and current distribution in baffled and unbaffled parallel plate electrochemical reactors, Chem. Eng. J. 66 (1997) 1–10 [CrossRef] [Google Scholar]
  22. J.Q. Cheng, B. Wang, L.V. Hong-ling, Numerical simulation and experiment on the electrolyte flow distribution for all vanadium redox flow battery, Adv. Mater. Res. 236-238 (2001) 604–607 [Google Scholar]
  23. J.E. Gonzalez, A. Alberola, P.A. Lopez Jimenez, Redox cell hydrodynamics modeling-simulation and experimental validation, Eng. Appl. Comput. Fluid Mech. 7 (2013) 168–181 [Google Scholar]
  24. A.A. Shah, M.J. Watt-Smith, F.C. Walsh, A dynamic performance model for redox-flow batteries involving soluble species, Electrochim. Acta 53 (2008) 8087–8100 [CrossRef] [Google Scholar]
  25. D. You, H. Zhang, J. Chen, A simple model for the vanadium redox battery, Electrochim. Acta 54 (2009) 6827–6836 [CrossRef] [Google Scholar]
  26. D. You, H. Zhang, C. Sun, X. Ma, Simulation of the self-discharge process in vanadium redox flow battery, J. Power Sources 196 (2011) 1578–1585 [CrossRef] [Google Scholar]
  27. M. Vynnycky, Analysis of a model for the operation of a vanadium redox battery, Energy 36 (2011) 2242–2256 [CrossRef] [Google Scholar]
  28. A. Tang, S. Ting, J. Bao, M. Skyllas-Kazacos, Thermal modelling and simulation of the all-vanadium redox flow battery, J. Power Sources203 (2012) 165–176 [Google Scholar]
  29. A. Tang, J. Bao, M. Skyllas-Kazacos, Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery, J. Power Sources 196 (2011) 10737–10747 [CrossRef] [Google Scholar]
  30. H. Al-Fetlawi, A.A. Shah, F.C. Walsh, Non-isothermal modelling of the all-vanadium redox flow battery, Electrochim. Acta 55 (2009) 78–89 [CrossRef] [Google Scholar]
  31. H. Al-Fetlawi, A.A. Shah, F.C. Walsh, Modelling the effects of oxygen evolution in the all-vanadium redox flow battery, Electrochim. Acta 55 (2010) 3192–3205 [CrossRef] [Google Scholar]
  32. K.W. Knehr, E. Agar, C.R. Dennison, A.R. Kalidindi, E.C. Kumbur, A Transient Vanadium Flow Battery Model Incorporating Vanadium Crossover and Water Transport through the Membrane, J. Electrochem. Soc. 159 (2012) A1446–A1459 [CrossRef] [Google Scholar]
  33. D. Schmal, J. Van Erkel, P.J. Van Dnin, Mass transfer at carbon fibre electrodes, J. Appl. Electrochem. 16 (1986) 422–430 [CrossRef] [Google Scholar]
  34. M. Tomadakis, T.J. Robertson, Viscous permeability of random fiber structures: comparison of electrical and diffusional estimates with experimental and analytical results, J. Compos. Mater. 39 (2005) 163–187 [CrossRef] [Google Scholar]
  35. J. Gonzalez-Garcia, P. Bonete, E. Exposito, V. Montiel, A. Aldaz, R. Torregrosa-Macia, Characterization of a carbon felt electrode: structural and physical properties, J. Mater. Chem. 9 (1999) 419–426 [CrossRef] [Google Scholar]
  36. G.A. Narsilio, O. Buzzi, S. Fityus, T.S. Yun, D.W. Smith, Upscaling of Navier–Stokes equations in porous media: Theoretical, numerical and experimental approach, Comput. Geotechnics 36 (2009) 1200–1206 [CrossRef] [Google Scholar]
  37. M.R.A.Van Gent, Formulae to describe porous flow, Internal report, TU Delft, Communications on hydraulic and geotechnical engineering, No. 1992-02, 0169-6548, http://repository.tudelft.nl/view/ir/uuid:202ef82d-4701-467a-b33c-827319b22c17/, 1992 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.