Open Access
Mechanics & Industry
Volume 16, Number 2, 2015
Article Number 203
Number of page(s) 11
Published online 22 January 2015
  1. G.J. Ranque, Experiences sur la détente giratoire avec simultanéite d’un échappement d’air chaud et d’un échappement d’air froid, Journal de Physique et le Radium 4 (1933) 112–114 [Google Scholar]
  2. R. Hilsch, Die expansion von gasen im zentrifugalfeld als kälteproze, Z. Naturforschung 1 (1946) 208–214 [Google Scholar]
  3. J. Harnett, E. Eckert, Experimental study of the velocity and temperature distribution in a high velocity vortex-type flow, Trans. ASME 79 (1957) 751–758 [Google Scholar]
  4. B. Ahlborn, J. Gordon The vortex tube as a classical thermodynamic refrigeration cycle, J. Appl. Phys. 88 (2000) 3645–653 [CrossRef] [Google Scholar]
  5. K. Stephan, S. Lin, M. Durst, F. Huang, D. Seher, An investigation of energy separation in a vortex tube, Int. J. Heat Mass Transfer 26 (1983) 341–348 [CrossRef] [Google Scholar]
  6. M. Kurosaka, Acoustic streaming in swirling flows, J. Fluid Mech. 124 (1982) 139–172 [Google Scholar]
  7. A.F. Gutsol, The Ranque effect, Phys. Uspekhi 40 (1997) 639–658 [CrossRef] [Google Scholar]
  8. W. Frohlingsdorf, H. Unger, Numerical investigations of the compressible flow and the energy separation in the Ranque-Hilsch vortex tube, Int. J. Heat Mass Transfer 42 (1999) 415–422 [Google Scholar]
  9. H.H. Bruun, Experimental investigation of the energy separation in vortex tubes, J. Mech. Eng. Sci. 11 (1969) 567–582 [CrossRef] [Google Scholar]
  10. B. Ahlborn, J.U. Keller, R. Staudt, G. Treitz, R. Rebhan, Limits of temperature separation in a vortex tube, J. Phys. D 27 (1994) 480–488 [CrossRef] [Google Scholar]
  11. B. Ahlborn, J. Camire, J.U. Keller, Low pressure vortex tubes, J. Phys. D29 (1996) 1469–1472 [Google Scholar]
  12. N.F. Aljuwayhel, G.F. Nellis, S.A. Klein, Parametric and internal study of the vortex tube using a CFD model, Int. J. Refrig. 28 (2005) 442–450 [CrossRef] [Google Scholar]
  13. H.M. Skye, G.F. Nellis, S.A. Klein, Comparison of CFD analysis to empirical data in a commercial vortex tube, Int. J. Refrig. 29 (2006) 71–80 [CrossRef] [EDP Sciences] [Google Scholar]
  14. S. Akhesmeh, N. Pourmahmoud, H. Sedgi, Numerical study of the temperature separation in the Ranque-Hilsch vortex tube, Am. J. Eng. Appl. Sci. 1 (2008) 181–187 [CrossRef] [Google Scholar]
  15. R. Shamsoddini, A.H. Nejad, Numerical analysis of the effects of nozzles number on the flow and power of cooling of a vortex tube, Int. J. Refrig. 33 (2010) 774–782 [CrossRef] [Google Scholar]
  16. R. Shamsoddini, A. Fighih-Khorasani, A new approach to study and optimize cooling performance of a Ranque-Hilsch vortex tube, Int. J. Refrig. 33 (2012) 2339–2348 [CrossRef] [Google Scholar]
  17. A. Bramo, N. Pourmahmoud, Computational fluid dynamics simulation of length to diameter ratio effects on the energy separation in a vortex tube, Thermal Sci. 15 (2011) 833–848 [CrossRef] [Google Scholar]
  18. N. Pourmahmoud, A. Hasanzadeh, O. Moutaby, Numerical analysis of the effect of helical nozzles gap on the cooling capacity of Ranque-Hilsch vortex tube, Int. J. Refrig. 35 (2012) 1473–1483 [CrossRef] [Google Scholar]
  19. M. Avci, The effects of nozzle aspect ratio and nozzle number on the performance of the Ranque-Hilsch vortex tube, Appl. Thermal Eng. 50 (2013) 302–308 [Google Scholar]
  20. H. Takahama, H. Yokosawa, Energy separation in vortex tubes with a divergent chamber, J. Heat Transfer 103 (1981) 196–203 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.