Open Access
Issue
Mechanics & Industry
Volume 16, Number 3, 2015
Article Number 301
Number of page(s) 5
DOI https://doi.org/10.1051/meca/2015003
Published online 19 March 2015
  1. S. Abadie, D. Morichon, S. Grilli, S. Glockner, Numerical simulation of waves generated by landslides using a multiple-fluid Navier-Stokes model, Coast. Eng. 57 (2010) 779–794 [CrossRef] [Google Scholar]
  2. D. Fuster, G. Agbaglah, C. Josserand, S. Popinet, S. Zaleski, Numerical simulation of droplets, bubbles and waves: state of the art, Fluid Dyn. Res. 41 (2009) 065001 [CrossRef] [Google Scholar]
  3. S. Vincent, J.P. Caltagirone, P. Lubin, T. Randrianarivelo, An adaptive augmented lagrangian method for three-dimensional multimaterial flows, Comput. Fluids 33 (2004) 1273–1289 [CrossRef] [MathSciNet] [Google Scholar]
  4. K.M.T. Kleefsman, G. Fekken, A.E.P. Veldman, B. Iwanowski, B. Buchner, A volume-of-fluid based simulation method for wave impact problems, J. Comput. Phys. 206 (2005) 363–393 [CrossRef] [Google Scholar]
  5. S.C. Hsiao, T.C. Lin, Tsunami-like solitary waves impinging and overtopping an impermeable seawall: Experiment and RANS modeling, Coast. Eng. 57 (2010) 1–18 [CrossRef] [Google Scholar]
  6. A. Yeganeh-Bakhtiary, F. Hajivalie, A. Hashemi-Javan, Steady streaming and flow turbulence in front of vertical breakwater with wave overtopping, Appl. Ocean Res. 32 (2010) 91–102 [CrossRef] [Google Scholar]
  7. P. Guyenne, S.T. Grilli, Numerical study of three-dimensional overturning waves in shallow water, J. Fluid Mech. 547 (2006) 361–388 [CrossRef] [MathSciNet] [Google Scholar]
  8. M.S. Çelebi, Computation of transient nonlinear ship waves using an adaptive algorithm, J. Fluids Struct. 14 (2000) 281–301 [CrossRef] [Google Scholar]
  9. D. Dutykh, R. Poncet, F. Dias, The volna code for the numerical modeling of tsunami waves: Generation, propagation and inundation, Eur. J. Mech. B/Fluids 30 (2011) 598–615 [CrossRef] [MathSciNet] [Google Scholar]
  10. P. Helluy, F. Golay, J.P. Caltagirone, P. Lubin, S. Vincent, D. Drevrard, R. Marcer, P. Fraunié, N. Seguin, S. Grilli, A.N. Lesage, A. Dervieux, O. Allain, Numerical simulation of wave breaking, M2AN (2005) [Google Scholar]
  11. F. Golay, P. Helluy, Numerical schemes for low Mach wave breaking, Int. J. Comput. Fluid Dyn. 21 (2007) 69–86 [CrossRef] [MathSciNet] [Google Scholar]
  12. A. Sambe, F. Golay, D. Sous, P. Fraunié, R. Marcer, Numerical wave breaking over macro-roughness, Eur. J. Mech. B/Fluid 30 (2011) 577–588 [CrossRef] [Google Scholar]
  13. F. Golay, Numerical entropy production and error indicator for compressible flows, C.R. Mecanique 337 (2009) 233–237 [CrossRef] [Google Scholar]
  14. G. Puppo, Numerical entropy production on shocks and smooth transitions, SIAM, J. Sci. Comput. 17 (2002) 263–271 [CrossRef] [Google Scholar]
  15. G. Puppo, Numerical entropy production for central schemes, SIAM, J. Sci. Comput. 25 (2003) 1382–1415 [Google Scholar]
  16. G. Puppo, M. Semplice, Numerical entropy and adaptivity for finite volume schemes, Commun. Comput. Phys. 10 (2011) 1132–1160 [Google Scholar]
  17. M. Ersoy, F. Golay, L. Yushchenko, Adaptive multi-scale scheme based on numerical entropy production for conservation laws, Cent. Eur. J. Math. 11 (2013) 1392–1415 [CrossRef] [MathSciNet] [Google Scholar]
  18. M.J. Berger, J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys. 53 (1984) 484–512 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  19. P. Houston, J.A. Mackenzie, E. Süli, G. Warnecke, A posteriori error analysis for numerical approximations of Friedrichs systems, Num. Math. 82 (1999) 433–470 [CrossRef] [Google Scholar]
  20. S. Karni, A. Kurganov, Local error analysis for approximate solutions of hyperbolic conservation laws, Adv. Comput. Math. 22 (2005) 79–99 [CrossRef] [Google Scholar]
  21. S. Müller, Y. Stiriba, Fully adaptive multiscale schemes for conservation laws employing locally varying time stepping, J. Sci. Comput. 30 (2007) 493–531 [CrossRef] [Google Scholar]
  22. Z. Tan, Z. Zhang, Y. Huang, T. Tang, Moving mesh methods with locally varying time steps, J. Comput. Phys. 200 (2004) 347–367 [CrossRef] [Google Scholar]
  23. C. Altmann, T. Belat, M. Gutnic, P. Helluy, H. Mathis, E. Sonnendrücker, W. Angulo, J.M. Hérard, A local time-stepping discontinuous Galerkin algorithm for the MHD system, ESAIM 28 (2009) 33–54 [CrossRef] [EDP Sciences] [Google Scholar]
  24. S. Osher, R. Sanders, Numerical approximations to nonlinear conservation laws with locally varying time and space grids, Math. Comput. 41 (1983) 321–336 [CrossRef] [Google Scholar]
  25. C.W. Shu, S. Osher, Efficient implementation of essentially nonoscillatory shock-capturing schemes, J. Comput. Phys. 77 (1988) 439–471 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  26. S. Koshizuka, H. Tamako, Y. Oka, A particle method for incompressible viscous flow with fluid fragmentations, Comput. Fluid Dyn. J. 4 (1995) 29–46 [Google Scholar]
  27. S. Popinet, Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries, J. Comput. Phys. 190 (2003) 572–600 [NASA ADS] [CrossRef] [Google Scholar]
  28. S. Popinet, G. Rickard, A tree-based solver for adaptive ocean modeling, Ocean Mod. 16 (2007) 224–249 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.