Open Access
Mechanics & Industry
Volume 16, Number 5, 2015
Article Number 509
Number of page(s) 11
Published online 08 July 2015
  1. M. Charde, R. Gupta, Annual Thermal Performance of a Hollow Roof in Combination with a Cavity Wall and Static Sunshade: Experimental Study of Energy-Efficient Rooms, J. Energy Eng. 139 (2013) 281–289 [CrossRef] [Google Scholar]
  2. M.W. Lin, J.B. Berman, Modelling of moisture migration in an FRP reinforced masonry structure, Building Environement 41 (2006) 646–656 [CrossRef] [Google Scholar]
  3. S.O. Olutimayin, C.J. Simonson, Measuring and modeling vapor boundary layer growth during transient diffusion heat and moisture transfer in cellulose insulation, Int. J. Heat Mass Transfer 48 (2005) 3319–3330 [CrossRef] [Google Scholar]
  4. D.B. Ingham, I. Pop, Transport Phenomena in Porous Media, Elsevier, Oxford, 2005 [Google Scholar]
  5. H.S.F. Awadalla, A.F. El-Dib, M.A. Mohamad, Mathematical modelling and experimental verification of wood drying process, Energy Convers. Manag. 45 (2004) 197–207 [CrossRef] [Google Scholar]
  6. O.F. Osanyintola, C.J. Simonson, Moisture buffering capacity of hygroscopic building materials: experimental facilities and energy impact, Energy Builings 38 (2006) 1270–1282 [Google Scholar]
  7. N. Mendes, P.C. Philippi, A method for predicting heat and moisture transfer through multilayered walls based on temperature and moisture contents gradients, Int. J. Heat Mass Transfer 48 (2005) 37–51 [CrossRef] [Google Scholar]
  8. J.R. Philip, D.A. De Vries, Moisture movement in porous materials under temperature gradients, Transactions American Geophysical Union 38 (1957) 222–232 [Google Scholar]
  9. A.V. Luikov, Heat and Mass Transfer in Capillary porous Bodies (Chap. 6), Pergamon Press, Oxford, UK, 1966 [Google Scholar]
  10. N. Mendes, P.C. Philippi, R. Lamberts, A new mathematical method to solve highly coupled equations of heat and mass transfer in porous media, Int. J. Heat Mass Transfer 45 (2002) 509–518 [Google Scholar]
  11. G.H. dos Santos, N. Mendes, Unsteady combined heat and moisture transfer in unsaturated porous soils, J. Porous Media 8 (2005) 493–510 [CrossRef] [Google Scholar]
  12. G.H. dos Santos, N. Mendes, Heat, air and moisture transfer through hollow porous blocks, Int. J. Heat Mass Transfer 52 (2009) 2390–2398 [Google Scholar]
  13. C.R. Pedersen, Prediction of moisture transfer in building constructions, Building Environement 27 (1992) 387–397 [CrossRef] [Google Scholar]
  14. H.M. Kunzel, K. Kiessel, Calculation of heat and moisture transfer in exposed building components, Int. J. Heat Mass Transfer 40 (1997) 159–167 [Google Scholar]
  15. A. Kalagasidis, HAM-Tools: An Integrated Simulation Tool for Heat, Air and Moisture Transfer Analysis in Building Physics, Ph.D. thesis, Chalmers University of Technology, Sweden, 2004 [Google Scholar]
  16. L. Qinru, R. Jiwu, F. Paul, Development of HAM tool for building envelope analysis, Building Environement 44 (2009) 1065-1073 [Google Scholar]
  17. M. Qin, R. Belarbi, A. Aït-Mokhtar, L.O. Nilsson, Coupled heat and moisture transfer in multi-layer building materials, Construction and Building Materials 23 (2009) 967–975 [CrossRef] [Google Scholar]
  18. M. Qin, A. Aït-Mokhtar, R. Belarbi, Two-dimensional hygrothermal transfer in porous building materials, Appl. Thermal Eng. 30 (2010) 2555–2562 [Google Scholar]
  19. K. Fanhong, W. Huaizhu, Heat and mass coupled transfer combined with freezing process in building materials: Modeling and experimental verification, Energy and Buildings 43 (2011) 2850–2859 [CrossRef] [Google Scholar]
  20. N.M.M. Ramos, A.S. Kalagasidis, V.P. de Freitas, J.M.P.Q. Delgado, Numerical simulation of transient moisture transport for hygroscopic inertia assessment, J. Porous Media 15 (2012) 793–804 [CrossRef] [Google Scholar]
  21. B. Klemczak, Prediction of Coupled Heat and Moisture Transfer in Early-Age Massive Concrete Structures, Numer. Heat Transfer A 60 (2011) 212–233 [CrossRef] [Google Scholar]
  22. L. Yanfeng, W. Yingying, W. Dengjia, L. Jiaping, Effect of moisture transfer on internal surface temperature, Energy Buildings 60 (2013) 83–91 [CrossRef] [Google Scholar]
  23. F. Tariku, M.K. Kumaran, P. Fazio, Transient model for coupled heat, air and moisture transfer through multilayered porous media, Int. J. Heat Mass Transfer 53 (2010) 3035–3044 [CrossRef] [Google Scholar]
  24. COMSOL, Multiphysics Modeling and Simulation Software, http://, 2011 [Google Scholar]
  25. J. Carmeliet, H. Hens, S. Roels, O. Adan, H. Brocken, R. Cerny, Z. Pavlik, C. Hall, K. Kumaran, L. Pel, Determination of the liquid water diffusivity from transient moisture transfer experiments, J. Thermal Env. Build. Sci. 27 (2004) 277–305 [Google Scholar]
  26. H.R. Thomas, H. Missoum, Three-dimensional coupled heat, moisture, and air transfer in a deformable unsaturated soil, Int. J. Numer. Methods Eng. 44 (1999) 919–943 [CrossRef] [Google Scholar]
  27. A.W.M. van Schijndel, Integrated Heat Air and Moisture Modeling and Simulation, Ph.D. thesis, Eindhoven University, Eindhoven, Netherlands, 2007 [Google Scholar]
  28. H.M. Kunzel, Simultaneous heat and moisture transport in building components: one and two-dimensional calculation using simple parameters, Ph.D. thesis, Institute of Building Physics, Germany, 1995 [Google Scholar]
  29. C.E. Hagentoft, HAMSTAD – Final report: Methodology of HAM-modeling. Rep. R-02:8, Gothenburg, Department of Building Physics, Chalmers University of Technology, 2002 [Google Scholar]
  30. C.E. Hagentoft, A. Kalagasidis, B. Adl-Zarrabi, S. Roels, J. Carmeliet, H. Hens, J. Grunewald, M. Funk, R. Becker, D. Shamir, O. Adan, H. Brocken, K. Kumaran, R. Djebbar, Assessment Method of Numerical Prediction Models for Combined Heat, Air and Moisture Transfer in Building Components: Benchmarks for One-dimensional Cases, J. Thermal Env. Build. Sci. 27 (2004) 327–352 [Google Scholar]
  31. F. Tariku, Whole building heat and moisture analysis, Ph.D. thesis, Concordia University, Montreal, Canada, 2008 [Google Scholar]
  32. A. Nicolai, Modelling and numerical simulation of salt transport and phase transitions in unsaturated porous building materials, PhD. dissertation, Syracuse University, New York, 2007 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.