Open Access
Mechanics & Industry
Volume 16, Number 5, 2015
Article Number 508
Number of page(s) 8
Published online 08 July 2015
  1. W.D. Mark, Stationary transducer response to planetary-gear vibration excitation II: effects of torque modulations, Mech. Syst. Signal Process. 23 (2009) 2253–2259 [CrossRef] [Google Scholar]
  2. B. Badri, M. Thomas, S. Sassi, Variable Drive Frequency Effect on Spindle Dynamic Behavior in High Speed Machining, CMMNO, 547–554 [Google Scholar]
  3. I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory 36 (1990) 961–1005 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  4. I. Yesilyurt, The application of the conditional moments analysis to gearbox fault detection – a comparative study using the spectrogram and scalogram, NDT & E International 37 (2004) 309–320 [CrossRef] [Google Scholar]
  5. K. Kodera, C.D. Villedary, R. Gendrin, A new method for the numerical analysis of nonstationary signals, Phys. Earth and Plan. Int. 12 (1976) 142–150 [CrossRef] [Google Scholar]
  6. F. Auger, P. Flandrin, Improving the Readability of Time-Frequency and Time-Scale Representations by Reassignment Methods, IEEE Trans. Signal Proc. 43 (1995) 1068–1089 [CrossRef] [Google Scholar]
  7. F. Auger, E. Chassande-Mottin, P. Flandrin, Making reassignment adjustable: The Levenberg-Marquardt approach, in Proc. IEEE-ICASSP, Kyoto, 2012, pp. 3889–3892 [Google Scholar]
  8. I. Daubechies, J. Lu, H.T. Wu, Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool, Appl. Comput. Harmonic Anal. 30 (2011) 243–261 [CrossRef] [Google Scholar]
  9. F. Auger, P. Flandrin, Y.T. Lin, S. McLaughlin, S. Meignen, T. Oberlin, H.T. Wu, Time-Frequency Reassignment and Synchrosqueezing: a review, IEEE Signal Process. Magazine 30 (2012) 32–41 [CrossRef] [Google Scholar]
  10. G. Thakur, E. Brevdo, N.S. Fuckar, H.T. Wu, The Synchrosqueezing algorithm for time-varying spectral analysis: Robustness properties and new paleoclimate applications, Signal Process. 93 (2013) 1079–1094 [CrossRef] [Google Scholar]
  11. T. Pu, L. Chai, Y.X. Sheng, Z.-X. Liu, A Synchrosqueezing Transform Based Method for Rotor Fault Diagnosis of Squirrel-cage Induction Motors, IEEE Conference Publication, Proceedings of the 32nd Chinese Control Conference, Xi’an, China, Jully 26–28, 2013 [Google Scholar]
  12. B. Hazra, S. Narasimhan, Rotating machinery diagnosis using synchro-squeezing transform based feature analysis. Proceedings of MFPT Conference, Cleveland, Ohio, USA, May 13–17, 2013 [Google Scholar]
  13. L. Chuan, L. Ming, Time-frequency signal analysis for gearbox fault diagnosis using a generalized synchrosqueezing transform, Mech. Syst. Signal Process. 26 (2012) 205–217 [CrossRef] [Google Scholar]
  14. M. Kedadouche, T. Kidar, M. Thomas, A. Tahan, M. El Badaoui, R. Guilbault, Combining EMD and Lempel-Ziv Complexity for early detection of gear cracks, International Conference Surveillance 7, Chartres, France, Oct 29–30, 2013 [Google Scholar]
  15. T. Kidar, M. Thomas, R. Guilbault, M. Elbadaoui, Comparison between the efficiency of LMD and EMD algorithms for early detection of gear defects, Mechanics & Industry 14 (2013) 121–127 [CrossRef] [EDP Sciences] [Google Scholar]
  16. G. Thakur, H.T. Wu, Synchrosqueezing-based recovery of instantaneous frequency from non-uniform samples, SIAM J. Math. Analys. 43 (2011) 2078–2095 [CrossRef] [Google Scholar]
  17. S. Meignen, T. Oberlin, S. Mclaughlin, A new algorithm for multicomponent signal analysis based on synchrosqueezing: with an application to signal sampling and denoising, IEEE Trans. Signal Process. 60 (2012) 5787–5798 [CrossRef] [Google Scholar]
  18. D. Iatsenko, P.V.E. McClintock, A. Stefanovska, Linear and synchrosqueezed time-frequency representations revisited. Part I: Overview, standards of use, related issues and algorithms. Digital Signal Processing (2014), [preprint: arXiv:1310.7215] [Google Scholar]
  19. F.Q. Peng, D.J. Yu, J.S. Luo, Sparse signal decomposition method based on multiscale chirplet and its application to the fault diagnosis of gearboxes, Mech. Syst. Signal Process. 25 (2011) 549–557 [CrossRef] [Google Scholar]
  20. M. El Badaoui, Contribution of vibratory diagnostic of gearbox by Cepstral analysis, (in french). Ph.D. thesis, Jean Monnet University of St Etienne (FR) (1999) [Google Scholar]
  21. A. Pareya, M. El Badaoui, F. Guillet, N. Tandon, Dynamic modelling of spur gear pair and application of empirical mode decomposition-based statistical analysis for early detection of localized tooth defect, J. Sound Vib. 294 (2006) 547–561 [CrossRef] [Google Scholar]
  22. M. El Badaoui, F. Guillet, J. Daniere, New applications of the real cepstrum to gear signals, including definition of a robust fault indicator, Mech. Syst. Signal Process. 18 (2004) 1031–1046 [CrossRef] [Google Scholar]
  23. R. Yan, R.X. Gao, Complexity as a Measure for Machine Health Evaluation, IEEE Trans. Instrumentation Measurement 53 (2004) 1327–1334 [CrossRef] [Google Scholar]
  24. H. Hong, M. Liang, Fault severity assessment for rolling element bearings using the Lempel-Ziv complexity and continuous wavelet transform, J. Sound Vib. 320 (2009) 452–468 [CrossRef] [Google Scholar]
  25. N. Sawalhi, R.B. Randall, Simulating gear and bearing interactions in the presence of faults Part II: Simulation of the vibrations produced by extended bearing faults, Mech. Syst. Signal Process. 22 (2008) 1952–1966 [CrossRef] [Google Scholar]
  26. S. Sassi, B. Badri, M. Thomas, Tracking surface degradation of ball bearings by means of new time domain scalar descriptors, Int. J. COMADEM 11 (2008) 36–45 [Google Scholar]
  27. R. Yan, R.X. Gao, Rotary machine health diagnosis based on empirical mode decomposition, J. Vib. Acousti. 130 (2008) 021007 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.