Open Access
Issue
Mechanics & Industry
Volume 16, Number 5, 2015
Article Number 506
Number of page(s) 8
DOI https://doi.org/10.1051/meca/2015031
Published online 08 July 2015
  1. K. Hiemenz, Die grenzschicht an einem in den gleichförmingen flüssigkeitsstrom eingetauchten graden kreiszylinder, Göttingen Dingl. Polytech. J. 326 (1911) 321–324 [Google Scholar]
  2. J. Gary, D.R. Kassoy, D.R. Tadjeran, A. Zebib, The effects of significant viscosity variation on convective heat transport in water saturated porous medium, J. Fluid Mech. 117 (1982) 233–241 [CrossRef] [Google Scholar]
  3. K.N. Mehta, S. Sood, Transient free convection flow with temperature dependent viscosity in a fluid saturated porous medium, Int. J. Eng. Sci. 30 (1992) 1083–1087 [CrossRef] [Google Scholar]
  4. N.G. Kafoussias, E.W. Williams, The effect of temperature dependent viscosity on free forced convective laminar boundary layer flow past a vertical isothermal flat plat, Acta Mechanica 110 (1995) 123–137 [CrossRef] [Google Scholar]
  5. N.G. Kafoussias, D.A.S. Rees, J.E. Daskalakis, Numerical study of the combined free forced convective laminar boundary layer flow past a vertical isothermal flat plate with temperature dependent viscosity, Acta Mechanica 127 (1998) 39–57 [CrossRef] [Google Scholar]
  6. M. Kumari, Effect of variable viscosity on non-Darcy free or mixed convection flow on a horizontal surface in a saturated porous medium, Int. Commun. Heat Mass Transfer 28 (2001) 723–732 [CrossRef] [Google Scholar]
  7. S. Mukhopadhyay, G.C. Layek, S.A. Samad, Study of MHD boundary layer flow over a heated stretching sheet with variable viscosity, Int. J. Heat Mass Transfer 48 (2005) 4460–4466 [CrossRef] [Google Scholar]
  8. M.E. Ali, The effect of variable viscosity on mixed convection heat transfer along a vertical moving surface, Int. J. Therm. Sci. 45 (2006) 60–69 [CrossRef] [Google Scholar]
  9. K.E. Chin, R. Nazar, N.M. Arifin, I. Pop, Effect of variable viscosity on mixed convection boundary layer flow over a vertical surface embedded in a porous medium, Int. Commun. Heat Mass Transfer 34 (2007) 464–473 [CrossRef] [Google Scholar]
  10. S. Mukhopadhyay, G.C. Layek, Effects of thermal radiation and variable fluid viscosity on free convective flow and heat transfer past a porous stretching surface, Int. J. Heat Mass Transfer 51 (2008) 2167–2178 [CrossRef] [Google Scholar]
  11. R. Kandasamy, I. Muhaimin, H. B. Saim, Lie group analysis for the effect of temperature-dependent fluid viscosity with thermophoresis and chemical reaction on MHD free convective heat and mass transfer over a porous stretching surface in the presence of heat source/sink, Commun. Nonlinear Sci. Numer. Simulat. 15 (2010) 2109–2123 [CrossRef] [Google Scholar]
  12. H. Görtler, Dreidimensionale instabilität der abenen staupunktströmung gegenüber wirbelartigen strömungen, H. Görtler, W. Tollmein (Eds.), 50 jahre grenzschichtforschung Braunschweig, Vieweg und Sohn, 1955, pp. 304–314 [Google Scholar]
  13. G. Hammerlin, Zur Instabilitäts theorie der ebenen staupunktströmung, H. Görtler, W. Tollmein (Eds.), 50 jahre grenzschichtforschung, Vieweg und Sohn, 1955, pp. 315–327 [Google Scholar]
  14. S.D.R. Wilson, I. Gladwell, The stability of a two-dimensional stagnation flow to three dimensional disturbances, J. Fluid Mech. 84 (1978) 517–527 [CrossRef] [Google Scholar]
  15. M.J. Lyell, P. Huerre, Linear and nonlinear stability of plane stagnation flow, J. Fluid Mech. 161 (1985) 295–312 [CrossRef] [Google Scholar]
  16. P. Hall, M.R. Malik, D.I.A. Poll, On the stability of an infinite swept attachment line boundary layer, Proc. Roy. Soc. London Ser. A 395 (1984) 229–245 [CrossRef] [MathSciNet] [Google Scholar]
  17. K. Brattkus, S.H. Davis, The linear stability of plane stagnation point flow against general disturbances, Q. J. Mech. Appl. Maths 44 (1991) 135–146 [CrossRef] [Google Scholar]
  18. K. Chen, M.M. Chen, C.W. Sohn, Thermal instability of two-dimensional stagnation point boundary layers, J. Fluid Mech. 132 (1983) 49–63 [CrossRef] [Google Scholar]
  19. D.G. Lasseigne, T.L. Jackson, Stability of a nonorthogonal stagnation flow to three dimensional disturbances, Theor. Comput. Fluid Dyn. 3 (1992) 207–218 [CrossRef] [Google Scholar]
  20. M. Amaouche, D. Boukari, Influence of thermal convection on non-orthogonal stagnation point flow, Int. J. Therm. Sci. 42 (2003) 303–310 [CrossRef] [Google Scholar]
  21. M. Amaouche, F. Naït Bouda, H. Sadat, The onset of thermal instability of a two dimensional hydromagnetic stagnation point flow, Int. J. Heat Mass Transfer 48 (2005) 4435–4445 [CrossRef] [Google Scholar]
  22. K. Kitamura, A. Mitsuishi, Fluid flow and heat transfer of mixed convection over heated horizontal plate placed in vertical downward flow, Int. J. Heat Mass Transfer 53 (2010) 2327–2336 [CrossRef] [Google Scholar]
  23. G.K. Batchelor, An introduction to fluid dynamics, Cambridge University Press, London, 1987 [Google Scholar]
  24. W.O. Criminale, T.L. Jackson, D.G. Lasseigne, Evolution of disturbances in stagnation point flow, J. Fluid Mech. 270 (1994) 331–347 [CrossRef] [Google Scholar]
  25. V. Theofilis, A. Fedorov, D. Obrist, U.C. Dallmann, The extended Görtler–Hammerlin model for linear instability of three dimensional incompressible swept attachment line boundary layer flow, J. Fluid Mech. 487 (2003) 27–313 [CrossRef] [Google Scholar]
  26. P. Moresco, J.J. Healey, Spatio temporal instability in mixed convection boundary layers, J. Fluid Mech. 402 (2000) 89–107 [CrossRef] [Google Scholar]
  27. Y. Madey, B. Pernaud Thomas, H. Vandeven, Une Rehabilitation des méthodes spectrales de type Laguerre, La Recherche Aérospatiale 6 (1985) 353–375 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.