Open Access
Issue
Mechanics & Industry
Volume 16, Number 6, 2015
Article Number 602
Number of page(s) 10
DOI https://doi.org/10.1051/meca/2015020
Published online 19 August 2015
  1. D. Radosavljevic, D.B. Spalding, Simultaneous prediction of internal and external aerodynamic and thermal flow field of a natural draft cooling tower in a cross wind, Proc. 6th IAHR Cooling Tower Workshop, vol Pisa, 1988 [Google Scholar]
  2. D.J. Bergstrom, D. Derksen, K.S. Rezkallah, Numerical study of wind flow over a cooling tower, J. Wind Eng. Ind. Aerodyna. 47 (1993) 657–664 [CrossRef] [Google Scholar]
  3. A.F.D. Preez, D.G. Kroger, Effect of wind on performance of a dry-cooling tower, Heat Recover. Syst. CHP 13 (1993) 139–146 [CrossRef] [Google Scholar]
  4. Q.D. Wei, B.Y. Zhang, K.Q. Liu, X.D. Du, X.Z. Meng, A study of the unfavorable effects of wind on the cooling efficiency of dry cooling towers, J. Wind Eng. Ind. Aerodyn. 54 (1995) 633–643 [CrossRef] [Google Scholar]
  5. D.D. Derksen, T.J. Bender, D.J. Bergstrom, K.S. Rezkallah, A study on the effects of wind on the air intake flow rate of a cooling tower: Part 1. Wind tunnel study, J. Wind Eng. Ind. Aerodyn. 64 (1996) 47–59 [CrossRef] [Google Scholar]
  6. M.D. Su, G.F. Tang, S. Fu, Numerical simulation of fluid flow and thermal performance of a dry-cooling tower under cross wind condition, J. Wind Eng. Ind. Aerodyn. 79 (1999) 289–306 [CrossRef] [Google Scholar]
  7. R.B. Bornoff, M.R. Mokhtarzadeh-Dehghan, A numerical study of interacting buoyant cooling-tower plumes, Atmospher. Environ. 35 (2001) 589–598 [CrossRef] [Google Scholar]
  8. N. Kapas, Investigation of flow characteristics of Heller-type cooling towers with different cooling delta angles, Periodica Politechnica ser. Mech. Eng. 2 (2003) 143–150 [Google Scholar]
  9. R. Al-Waked, M. Behnia, The performance of natural draft dry cooling towers under crosswind: CFD study, Int. J. Energy Res. 28 (2004) 147–161 [CrossRef] [Google Scholar]
  10. M.R. Mokhtarzadeh-Dehghan, C.S. Konig, A.G. Robins, Numerical study of single and two interacting turbulent plumes in atmospheric cross flow, Atmospher. Environ. 40 (2006) 3909–3923 [CrossRef] [Google Scholar]
  11. Z. Zhai, S. Fu, Improving cooling efficiency of dry-cooling towers under cross-wind conditions by using wind-break methods, Appl. Thermal Eng. 26 (2006) 1008–1017 [CrossRef] [Google Scholar]
  12. N. Williamsona, S. Armfielda, M. Behnia, Numerical simulation of flow in a natural draft wet cooling tower – The effect of radial thermofluid fields, Appl. Thermal Eng. 28 (2008) 178–189 [CrossRef] [Google Scholar]
  13. H.G. Weller, G. Tabor, H. Jasak, C . Fureby, A Tensorial Approach to Computational Continuum Mechanics using Object-Oriented Techniques, Comput. Phys. 12 (1998) 620–631 [CrossRef] [Google Scholar]
  14. B.E. Launder, D.B. Spalding, The numerical computation of turbulent flows, Comput. Methods Appl. Mech. Eng. 3 (1974) 269–289 [CrossRef] [Google Scholar]
  15. H. Jasak, H.G. Weller, A.D. Gosman, High resolution NVD differencing scheme for arbitrarily unstructured meshes, Int. J. Numer. Methods Fluids 31 (1999) 431–449 [CrossRef] [Google Scholar]
  16. A.O. Demuren, W. Rodi, Three-dimensional numerical calculations of flow and plume spreading past cooling towers, J. Heat Transfer 109 (1987) 113-119 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.