Open Access
Issue
Mechanics & Industry
Volume 16, Number 6, 2015
Article Number 603
Number of page(s) 11
DOI https://doi.org/10.1051/meca/2015029
Published online 20 August 2015
  1. W.S. Hemp, Optimum structures, Clarendon, Oxford, 1973 [Google Scholar]
  2. P. Pedersen, Topology optimization of three-dimensional trusses, in: M.P. Bendsøe, C.A. Mota Soares (eds.) Topology design of structures, edited by Kluwer, Dordrecht, 1993, pp. 19–30 [Google Scholar]
  3. M.P. Saka, Shape Optimization of Trusses, J. Struct. Div. ASCE 106 (1980) 1155–1174 [Google Scholar]
  4. W. Achtziger, On simultaneous optimization of truss geometry and topology, Struct. Multidiscip. Optim. 33 (2007) 285–305 [CrossRef] [MathSciNet] [Google Scholar]
  5. A.J. Torii, R.H. Lopez, F. Biondini, An approach to reliability-based shape and topology optimization of truss structures, Eng. Optim. 44 (2012) 37–53 [CrossRef] [MathSciNet] [Google Scholar]
  6. A.J. Torii, R.H. Lopez, M. Luersen, A local-restart coupled strategy for simultaneous sizing and geometry truss optimization, Latin Am. J. Solids Struct. 8 (2011) 335–349 [Google Scholar]
  7. S. Rajeev, C.S. Krishnamoorthy, Discrete optimization of structures using genetic algorithms, J. Struct. Eng. 118 (1992) 1233–1250 [CrossRef] [Google Scholar]
  8. S.D. Rajan, Sizing, shape, and topology design optimization of trusses using genetic algorithms, J. Struct. Eng. 121 (1995) 1480–1487 [CrossRef] [Google Scholar]
  9. P. Hajela, E. Lee, Genetic algorithms in truss topological optimization, Int. J. Solids Struct. 32 (1995) 3341–3357 [CrossRef] [Google Scholar]
  10. K. Deb, S. Gulati, Design of truss-structures for minimum weight using genetic algorithms, Finite Elements in Analysis and Design 37 (2001) 447–465 [Google Scholar]
  11. J.-P. Li, Truss topology optimization using an improved species-conserving genetic algorithm, Eng. Optim. 47 (2014) 107–128 [Google Scholar]
  12. S.F. Hwang, R.S. He, Engineering optimization using a real-parameter genetic-algorithm-based hybrid method, Eng. Optim. 38 (2006) 833–852 [CrossRef] [Google Scholar]
  13. Y.C. Lu, J.C. Jan, S.L. Hung, G.H. Hung, Enhancing particle swarm optimization algorithm using two new strategies for optimizing design of truss structures, Eng. Optim. 45 (2013) 1251–1271 [CrossRef] [Google Scholar]
  14. A. Kaveh, S. Talatahari, Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures, Comput. Struct. 89 (2009) 267–283 [CrossRef] [Google Scholar]
  15. O. Hasançebi, F. Erbatur, Layout optimization of trusses using simulated annealing, Adv. Eng. Software 33 (2002) 681–696 [CrossRef] [Google Scholar]
  16. J.A. Bland, Optimal structural design by ant colony optimization, Eng. Optim. 33 (2001) 425–443 [CrossRef] [Google Scholar]
  17. K.S. Lee, Z.W. Geem, S.-H.O. Lee, K.-W Bae, The harmony search metaheuristic algorithm for discrete structural optimization, Eng. Optim. 37 (2005) 663–684 [CrossRef] [MathSciNet] [Google Scholar]
  18. L.F.F. Miguel, L.F. Fadel Miguel, Shape and size optimization of truss structures considering dynamic constraints through modern metametaheuristic algorithms, Expert Syst. Appl. 39 (2012) 9458–9467 [CrossRef] [Google Scholar]
  19. A. Kaveh, A. Zolghadr, Topology optimization of trusses considering static and dynamic constraints using the CSS, Appl. Soft Comput. 13 (2013) 2727–2734 [Google Scholar]
  20. M. Sonmez, Artificial Bee Colony algorithm for optimization of truss structures, Appl. Soft Comput. 11 (2011) 2406–2418 [CrossRef] [Google Scholar]
  21. O. Hasançebi, S.K. Azad, Discrete size optimization of steel trusses using a refined big bang–big crunch algorithm, Eng. Optim. 46 (2014) 61–83 [CrossRef] [MathSciNet] [Google Scholar]
  22. K. Hamza, H. Mahmoud, K. Saitou, Design optimization of N-shaped roof trusses using reactive taboo search, Appl. Soft Comput. 3 (2003) 221–235 [CrossRef] [Google Scholar]
  23. A.H. Gandomi, S. Talatahari, X.S. Yang, S. Deb, Design optimization of truss structures using cuckoo search algorithm, Struct. Design Tall Spec. Build. 22 (2013) 1330–1349 [CrossRef] [Google Scholar]
  24. M.P. Saka, Optimum Design of Skeletal Structures: A Review, in Progress in Civil and Structural Engineering Computing, edited by B.H.V. Topping, Saxe-Coburg Publications, Stirlingshire, UK, 2003, Chap. 10, pp. 237–284 [Google Scholar]
  25. L. Lamberti, C. Pappalettere, Metametaheuristic Design Optimization of Skeletal Structures: A Review, Comput. Technol. Rev. 4 (2011) 1–32 [CrossRef] [Google Scholar]
  26. H.G. Beyer, B. Sendhoff, Robust optimization – a comprehensive review, Comput. Methods Appl. Mech. Eng. 196 (2007) 3190–3218 [Google Scholar]
  27. R.H. Lopez, A. Beck, Reliability based design optimization based on FORM: a review, J. Braz. Soc. Mech. Sci. Eng. 34 (2012) 506–514 [CrossRef] [Google Scholar]
  28. G.C. Calafiore, F. Dabbene, Optimization under uncertainty with applications to design of truss structures, Struct. Multidiscip. Optim. 35 (2008) 189–200 [CrossRef] [MathSciNet] [Google Scholar]
  29. M. Papadrakakis, N.D. Lagaros, Soft computing methodologies for structural optimization, Appl. Soft Comput. 3 (2003) 283-300 [Google Scholar]
  30. R. Nakib, Deterministic and reliability-based optimization of truss bridges, Comput. Struct. 65 (1997) 767–775 [CrossRef] [Google Scholar]
  31. C.K. Thampan, C.S. Krishnamoorthy, System reliability-based configuration optimization of trusses, J. Struct. Eng. 27 (2001) 947–956 [CrossRef] [Google Scholar]
  32. D. Greiner, P. Hajela, Truss topology optimization for mass and reliability considerations – Co-evolutionary multiobjective formulations, Struct. Multidiscip. Optim. 45 (2012) 589–613 [Google Scholar]
  33. Y. Murotsu, S. Shao, Optimum shape design of truss structures based on reliability, Struct. Optim. 2 (1990) 65–76 [CrossRef] [Google Scholar]
  34. R. Stocki, K. Kolanek, S. Jendo, M. Kleiber, Study on discrete optimization techniques in reliability-based optimization of truss structures, Comput. Struct. 79 (2001) 2235–2247 [CrossRef] [Google Scholar]
  35. RE. Melchers, Structural Reliability Analysis and Prediction. John Wiley & Sons, Chichester, 1999. [Google Scholar]
  36. C.G. Bucher, U. Bourgund, A fast and efficient response surface approach for structural reliability problems, Struct. Safety 7 (1990) 57–66 [Google Scholar]
  37. S.C. Kang, H.M. Koh, J.F. Choo, An efficient response surface method using moving least squares approximation for structural reliability analysis, Probab. Eng. Mech. 25 (2010) 365–371 [CrossRef] [Google Scholar]
  38. S.H. Kim, S.W. Na, Response surface method using vector projected sampling points, Struct. Safety 19 (1997) 3–19 [Google Scholar]
  39. A.J. Torii, R.H. Lopez, Reliability analysis of water distribution networks using the adaptive response surface approach, J. Hydraulic Eng. 138 (2012) 227–236 [CrossRef] [Google Scholar]
  40. X.-S. Yang, Firefly algorithms for multimodal optimization, in: Stochastic Algorithms: Foundations and Applications, SAGA 2009, Lecture Notes in Computer Sciences, 5792, pp. 169–178 [Google Scholar]
  41. M.-H. Horng, R.J. Liou, Multilevel minimum cross entropy threshold selection based on the firefly algorithm, Expert Syst. Appl. 38 (2011) 14805–14811 [Google Scholar]
  42. M.-H. Horng, Vector quantization using the firefly algorithm for image compression, Expert Syst. Appl. 39 (2012) 1078–1091 [CrossRef] [Google Scholar]
  43. X.-S. Yang, S.S.S. Hosseini, A.H. Gandomi, Firefly Algorithm for solving non-convex economic dispatch problems with valve loading effect, Appl. Soft Comput. 12 (2012) 1180–1186 [Google Scholar]
  44. K. Chandrasekaran, S.P. Simon, Network and reliability constrained unit commitment problem using binary real coded firefly algorithm, Int. J. Electr. Power Energy Syst. 43 (2012) 921–932 [CrossRef] [Google Scholar]
  45. A.H. Gandomi, X.-S. Yang, S. Talataharic, A.H. Alavi, Firefly Algorithm with Chaos, Commun. Nonlinear Sci. Numerical Simulat. 18 (2013) 89–98 [CrossRef] [Google Scholar]
  46. L.F.F. Miguel, R.H. Lopez, L.F. Fadel Miguel, Multimodal size, shape, and topology optimisation of truss structures using the Firefly algorithm, Adv. Eng. Software 56 (2013) 23–37 [CrossRef] [Google Scholar]
  47. A.H. Gandomi, X.S. Yang, A.H. Alavi, Mixed variable structural optimization using Firefly Algorithm, Comput. Struct. 89 (2011) 2325–2336 [Google Scholar]
  48. W.C. Dorn, R.E. Gomory, H.J. Greenberg, Automatic design of optimal structures, J. Mech. 3 (1964) 25–52 [Google Scholar]
  49. J. Lee, S. Yang, W. Ruy, A comparative study on reliability index and target performance based probabilistic structural design optimization, Comput. Struct. 257 (2002) 269–80 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.