Open Access
Issue
Mechanics & Industry
Volume 16, Number 6, 2015
Article Number 611
Number of page(s) 10
DOI https://doi.org/10.1051/meca/2015041
Published online 04 September 2015
  1. V.C.P. Chen, K.-L. Tsui, R.R. Barton, M. Meckesheimer, A review on design, modeling and applications of computer experiments, IIE Transactions 38 (2006) 273–291 [CrossRef] [Google Scholar]
  2. J. Stark, Product lifecycle management, 21st century paradigm for product realisation, 1st edition, Springer, 2004 [Google Scholar]
  3. CIMDATA, Beyond Simulation Data Management, 2012 [Google Scholar]
  4. G. Feng, D. Cui, C. Wang, J. Yu, Integrated data management in complex product collaborative design, Computers in Industry 60 (2009) 48–63 [CrossRef] [Google Scholar]
  5. S. Charles, Gestion intégrée de données CAO et EF. Contribution à la liaison entre conception mécanique et calcul de structures, Thèse, Université de Technologie de Troyes, 2005 [Google Scholar]
  6. E. Patelli, et al., General purpose software for efficient uncertainty management of large finite element models, Finite Elements in Analysis and Design 51 (2012) 31–48 [CrossRef] [Google Scholar]
  7. V. Adams, A Designer’s Guide to Simulation with Finite Element Analysis, NAFEMS, 2008 [Google Scholar]
  8. Y. Benhafid, N. Troussier, N. Boudaoud, Z. Cherfi, Méthode d ’aide à l’idéalisation de modèles issus de la CAO pour le calcul de structures, Mechanics & Industry 6 (2005) 289–295 [CrossRef] [EDP Sciences] [Google Scholar]
  9. X.-S. Yang, S. Koziel, L. Leifsson, Computational Optimization, Modelling and Simulation: Recent Trends and Challenges, in: Proceedings of International Conference on Computational Science, ICCS 2013, Procedia Computer Science, Elsevier B.V., Barcelona, Spain, 2013, pp. 855–860 [Google Scholar]
  10. F. Pourroy, Apport des éléments finis à la conception mécanique, in: Méthodes et Outils Pour La Conception, Les Techniques de L’Ingénieur, Paris, 1999, pp. 475–483 [Google Scholar]
  11. M. Norris, Business Value from Simulation Data Management-a Decade of Production Experience, NAFEMS, 2012 [Google Scholar]
  12. ProSTEP, Automotive CAE Integration, Annex: Simulation Data Management, 2010 [Google Scholar]
  13. S. Chari, Addressing Engineering Simulation Data Management (SDM) Challenges, White Paper, Cabot Partners, 2013 [Google Scholar]
  14. P. Lalor, Simulation Lifecycle Management, NAFEMS – Benchmark Journal, 2007, pp. 16–19 [Google Scholar]
  15. A. Skoogh, T. Perera, B. Johansson, Input data management in simulation – Industrial practices and future trends, Simul. Modell. Practice Theory 29 (2012) 181–192 [CrossRef] [Google Scholar]
  16. S.K. Chandrasegaran, K. Ramani, R.D. Sriram, et al., The evolution, challenges, and future of knowledge representation in product design systems, Computer-Aided Design 45 (2013) 204–228 [CrossRef] [Google Scholar]
  17. P. Graignic, T. Vosgien, M. Jankovic, V. Tuloup, J. Berquet, N. Troussier, Complex System Simulation: Proposition of a MBSE Framework for Design-Analysis Integration, in: Proceedings of Systems Engineering Research (CSER’13), Procedia Computer Science, Elsevier B.V., Atlanta, Georgy, 2013, pp. 59–68 [Google Scholar]
  18. W. Wang, R. Mo, Y.T. Jin, Y. Zhang, Research on Multi-dimensional Simulation Data Management Model for Complicated Product, in: Proceedings of 2010 International Conference on Electrical and Control Engineering, IEEE, Wuhan, China, 2010, pp. 2948–2951 [Google Scholar]
  19. I. Assouroko, G. Ducellier, B. Eynard, P. Boutinaud, Semantic-based approach for the integration of product design and numerical simulation, in: Proceedings of International Conference on Product Lifecycle Management, 2011 [Google Scholar]
  20. H. Yin, Y. Gao, H. Yan, J. Wang, Simulation Data and Process Management System in the Development of Virtual Prototype, in: Proceedings of 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, IEEE, Toronto, Ontario, 2010, pp. 152–155 [Google Scholar]
  21. S.J. Fenves, S. Foufou, C. Bock, R.D. Sriram, CPM: A Core Model for Product Data, 2006, pp. 1–14 [Google Scholar]
  22. S. Charles, B. Eynard, P. Bartholomew, C. Paleczny, Standardization of the Finite Element Analysis Data-Exchange in Aeronautics Concurrent Engineering, J. Comput. Inform. Sci. Eng. 5 (2005) 63–66 [CrossRef] [Google Scholar]
  23. B.-K. Park, J.J. Kim, A sharable format for multidisciplinary finite element analysis data, Computer-Aided Design 44 (2012) 626–636 [CrossRef] [Google Scholar]
  24. K.a. Hunten, A. Barnard Feeney, V. Srinivasan, Recent advances in sharing standardized STEP composite structure design and manufacturing information, Computer-Aided Design 45 (2013) 1215–1221 [CrossRef] [Google Scholar]
  25. J.S. Gero, M.A. Rosenman, A conceptual framework for knowledge-based design research at Sydney University’s design computing unit, Artif. Intell. Eng. 5 (1990) 65–77 [CrossRef] [Google Scholar]
  26. S.J. Fenves, R.D. Sriram, Y. Choi, B. Gurumoorthy, G. Mocko, Master Product Model for the Support of Tighter Integration of Spatial and Functional Design, 2003 [Google Scholar]
  27. ProSTEP/IViP, Simulation Data Management. Recommendation. Integration of Simulation and Computation in a PDM Environment (SimPDM), PSI 4, Version 2.0, 2008 [Google Scholar]
  28. G. Syal, CAE-Process and Networks: A Methodology for Continuous Product Validation, Ph.O. Thesis, Karlsruhe Institute of Technology, 2013 [Google Scholar]
  29. CRESCENDO Consortium, CRESCENDO Forum Handbook, CRESCENDO Forum, Toulouse, 2013, p. 160 [Google Scholar]
  30. G.G. Wang, S. Shan, Review of Metamodeling Techniques in Support of Engineering Design Optimization, J. Mech. Design 2006 (2006) 415–426 [Google Scholar]
  31. CIMDATA, Simulation & Analysis Governance, 2014 [Google Scholar]
  32. I. Assouroko, G. Ducellier, P. Boutinaud, B. Eynard, Knowledge management and reuse in collaborative product development – a semantic relationship management-based approach, Int. J. Product Lifecycle Manage. 7 (2014) 54–74 [CrossRef] [Google Scholar]
  33. H. Panetto, M. Dassisti, A. Tursi, ONTO-PDM: Product-driven ontology for Product Data Management interoperability within manufacturing process environment, Adv. Eng. Inform. 26 (2012) 334–348 [CrossRef] [Google Scholar]
  34. C. Danjou, J. Le Duigou, B. Eynard, Closed-Loop Manufacturing process based on STEP-NC, Int. J. Interactive Design Manufact. (2015) http://dx.doi.org/10.1007/s12008-015-0268-1 [Google Scholar]
  35. Y. Xue-rong, L. Jia-hong, L. Ying, L. Feng, F. Xiang-jun, W. Yuan-lan, Study of Universal Simulation Data Management System, in: 2009 International Conference on Information Technology and Computer Science, IEEE, 2009, pp. 333–338 [Google Scholar]
  36. L. Yu, W. Gao, Q. An, J. Zhao, D. Liang, D. Gao, Data resource management according to customer requirements, Math. Comput. Modell. 54 (2011) 895–901 [CrossRef] [Google Scholar]
  37. J. Franco, Planification d’expériences numériques en phase exploratoire pour la simulation des phénomènes complexes, Thèse, Ecole Nationale Supérieure des Mines de Saint-Etienne (ENSM-SE), 2008 [Google Scholar]
  38. A. Beal, M. Claeys-Bruno, M. Sergent, Constructing space-filling designs using an adaptive WSP algorithm for spaces with constraints, Chemometrics and Intelligent Laboratory Systems 133 (2013) 84–91 [CrossRef] [Google Scholar]
  39. J. Gauchi, Plans d’expériences optimaux: un exposé didactique, La Revue de Modulad 33 (2005) [Google Scholar]
  40. T.W. Simpson, J. Peplinski, P.N. Koch, Metamodels for computer-based engineering design: survey and recommendations, Eng. Comput. 17 (2001) 129–150 [CrossRef] [Google Scholar]
  41. V. Picheny, D. Ginsbourger, O. Roustant, R.T. Haftka, N.-H. Kim, Adaptive Designs of Experiments for Accurate Approximation of a Target Region, J. Mech. Design 132 (2010) 81–89 [CrossRef] [Google Scholar]
  42. S. Gazut, J.-M. Martinez, G. Dreyfus, Y. Oussar, Towards the optimal design of numerical experiments, IEEE Trans. Neural Networks 19 (2008) 874–882 [CrossRef] [Google Scholar]
  43. E. Janouchová, A. Kuèerová, Competitive comparison of optimal designs of experiments for sampling-based sensitivity analysis, Comput. Struct. 124 (2013) 47–60 [CrossRef] [Google Scholar]
  44. S.M. Sanchez, H. Wan, Work smarter, not harder: a tutorial on designing and conducting simulation experiments, in: Winter Simulation Conference, 2012, pp. 1929–1943 [Google Scholar]
  45. M.J. Pais, F.A.C. Viana, N.H. Kim, Enabling high-order integration of fatigue crack growth with surrogate modeling, Int. J. Fatigue 43 (2012) 150–159 [CrossRef] [Google Scholar]
  46. E. Iuliano, D. Quagliarella, Proper Orthogonal Decomposition, surrogate modelling and evolutionary optimization in aerodynamic design, Comput. Fluids 84 (2013) 327–350 [CrossRef] [Google Scholar]
  47. T. Braconnier, M. Ferrier, J.-C. Jouhaud, M. Montagnac, P. Sagaut, Towards an adaptive POD/SVD surrogate model for aeronautic design, Comput. Fluids 40 (2011) 195–209 [CrossRef] [Google Scholar]
  48. S. Koziel, S. Ogurtsov, L. Leifsson, Knowledge-Based Response Correction and Adaptive Design Specifications for Microwave Design Optimization, in: Proceedings of International Conference on Computational Science, ICCS 2012, Procedia Computer Science, Elsevier B.V., Omaha, Nebraska, 2012, pp. 764–773 [Google Scholar]
  49. S. Koziel, S. Ogurtsov, L. Leifsson, Physics-based Surrogates for Low-cost Modeling of Microwave Structures, in: Proceedings of International Conference on Computational Science, ICCS 2013, Procedia Computer Science, Elsevier B.V., Barcelona, Spain, 2013, pp. 869–878 [Google Scholar]
  50. A. Negahban, J.S. Smith, Simulation for manufacturing system design and operation: Literature review and analysis, J. Manufact. Syst. 33 (2014) 241–261 [CrossRef] [Google Scholar]
  51. U.A. Dabade, R.C. Bhedasgaonkar, Casting Defect Analysis using Design of Experiments (DoE) and Computer Aided Casting Simulation Technique, in: Proceedings of Forty Sixth CIRP Conference on Manufacturing Systems 2013, Elsevier B.V., Setubal, Portugal, 2013, pp. 616–621 [Google Scholar]
  52. W. Hu, L.G. Yao, Z.Z. Hua, Optimization of sheet metal forming processes by adaptive response surface based on intelligent sampling method, J. Mater. Process. Technol. 197 (2008) 77–88 [CrossRef] [Google Scholar]
  53. J. Luo, W. Lu, Sobol’ sensitivity analysis of NAPL-contaminated aquifer remediation process based on multiple surrogates, Comput. Geosci. 67 (2014) 110–116 [CrossRef] [Google Scholar]
  54. L. Shi, K. Rasheed, A survey of Fitness Approximation Methods Applied in Evolutionnary algorithms, in: Computational Intelligence in Expensive Optimization Problems, Springer, 2010, pp. 3–28 [Google Scholar]
  55. G.E.P. Box, K.B. Wilson, On the experimental attainment of optimum conditions, J. Royal Statist. Soc. 13 (1951) 1–45 [Google Scholar]
  56. D.G. Krige, A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand, J. Chem. Metall. Mining Soc. South Africa 52 (1951) 119–139 [Google Scholar]
  57. G. Matheron, Principles of geostatistics, Economic Geology 58 (1963) 1246–1266 [CrossRef] [Google Scholar]
  58. J.H. Friedman, Multivariate Adaptive Regression Splines, The Annals of Statistics 19 (1991) 1–141 [CrossRef] [MathSciNet] [Google Scholar]
  59. A.I.J. Forrester, A.J. Keane, Recent advances in surrogate-based optimization, Progress Aerospace Sci. 45 (2009) 50–79 [NASA ADS] [CrossRef] [Google Scholar]
  60. V. Dubourg, B. Sudret, F. Deheeger, Metamodel-based importance sampling for structural reliability analysis, Probab. Eng. Mech. 33 (2013) 47–57 [CrossRef] [Google Scholar]
  61. S. Castric, L. Denis-Vidal, Z. Cherfi, G.J. Blanchard, N. Boudaoud, Modeling Pollutant Emissions of Diesel Engine based on Kriging Models: a Comparison between Geostatistic and Gaussian Process Approach, in: Proceedings of 14th IFAC Symposium on Information Control Problems in Manufacturing, INCOM’12, Bucharest, Romania, 2012, pp. 1708–1715 [Google Scholar]
  62. D. Lim, Y. Jin, Y. Ong, B. Sendhoff, Generalizing Surrogate-Assisted Evolutionary Computation, IEEE Trans. Evol. Comput. 14 (2010) 329–355 [CrossRef] [Google Scholar]
  63. D. Gorissen, T. Dhaene, P. Demeester, I. Couckuyt, K. Crombecq, A Surrogate Modeling and Adaptive Sampling Toolbox for Computer Based Design, J. Machine Learning Res. 11 (2010) 2051–2055 [Google Scholar]
  64. D. Gorissen, T. Dhaene, F. De Turck, Evolutionary Model Type Selection for Global Surrogate Modeling, J. Machine Learning Res. 10 (2009) 2039–2078 [Google Scholar]
  65. S. Razavi, B.A. Tolson, D.H. Burn, Numerical assessment of metamodelling strategies in computationally intensive optimization, Environ. Modell. Software 34 (2012) 67–86 [CrossRef] [Google Scholar]
  66. Z.-H. Han, S. Görtz, R. Zimmermann, Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function, Aerospace Sci. Technol. 25 (2013) 177–189 [CrossRef] [Google Scholar]
  67. I. Couckuyt, F. De Turck, T. Dhaene, D. Gorissen, Automatic surrogate model type selection during the optimization of expensive black-box problems, in: S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu (Ed.) Proceedings of Winter Simulation Conference, IEEE, Phoenix, Arizona, 2011, pp. 4274–4284 [Google Scholar]
  68. V. Dubourg, Méta-modèles adaptatifs pour l’analyse de fiabilité et l’optimisation sous contrainte fiabiliste, Thèse, Université Blaise Pascal-Clermont II, 2011 [Google Scholar]
  69. A. Lghali, Surrogate Based Optimization Using Kriging Based Approximation, 2012 [Google Scholar]
  70. D. Huang, T.T. Allen, W.I. Notz, N. Zheng, Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models, J. Global Optim. 34 (2006) 441–466 [CrossRef] [MathSciNet] [Google Scholar]
  71. C. Chevalier, Fast uncertainty reduction strategies relying on Gaussian process models, Thèse, University of Bern, 2013 [Google Scholar]
  72. F. Jurecka, M. Ganser, K.-U. Bletzinger, Update scheme for sequential spatial correlation approximations in robust design optimisation, Comput. Struct. 85 (2007) 606–614 [CrossRef] [Google Scholar]
  73. N. Courrier, P.-A. Boucard, B. Soulier, The use of partially converged simulations in building surrogate models, Adv. Eng. Software 67 (2014) 186–197 [CrossRef] [Google Scholar]
  74. H. Liu, S. Maghsoodloo, Simulation optimization based on Taylor Kriging and evolutionary algorithm, Appl. Soft Comput. 11 (2011) 3451–3462 [CrossRef] [Google Scholar]
  75. M. Ejday, L. Fourment, Optimisation multi-objectifs à base de méta-modèle pour les problèmes de mise en forme, Mechanics & Industry 11 (2010) 223–233 [CrossRef] [EDP Sciences] [Google Scholar]
  76. I. Boussaïd, J. Lepagnot, P. Siarry, A survey on optimization metaheuristics, Inform. Sci. 237 (2013) 82–117 [CrossRef] [MathSciNet] [Google Scholar]
  77. J. Rada-Vilela, M. Johnston, M. Zhang, Population statistics for particle swarm optimization: Resampling methods in noisy optimization problems, Swarm and Evol. Comput. 17 (2014) 1–23 [CrossRef] [Google Scholar]
  78. B. Yannou, F. Cluzel, M. Dihlmann, Evolutionary and interactive sketching tool for innovative car shape design, Mechanics & Industry 14 (2013) 1–22 [CrossRef] [EDP Sciences] [Google Scholar]
  79. L. Gacôgne, Comparaison entre PSO et autre heuristiques d’optimisation avec opérateurs implicites, in: Séminaire Optimisation Par Essaim Particulaire, Paris, France, 2003, pp. 1–12 [Google Scholar]
  80. E. Jack Chen, M. Li, Design of experiments for interpolation-based metamodels, Simul. Modell. Practice Theory 44 (2014) 14–25 [CrossRef] [Google Scholar]
  81. D. Bingham, P. Ranjan, W.J. Welch, Design of Computer Experiments for Optimization, Estimation of Function Contours, and Related Objectives, in: Statistics in Action: A Canadian Outlook, 2014, p. 109 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.