Open Access
Issue
Mechanics & Industry
Volume 17, Number 1, 2016
Article Number 109
Number of page(s) 8
DOI https://doi.org/10.1051/meca/2015047
Published online 13 November 2015
  1. B. Kilkis, Energy Storage Systems, NATO ASI Ser. E: Appl. Sci. 167 (1989) [Google Scholar]
  2. V. Fthenakis, Proceeding of 2nd Compressed Air Energy Storage (CAES) Conference and Workshop, Columbia University, Columbia, US, 2010 [Google Scholar]
  3. S. Succar, Compressed Air Energy Storage: Theory, Resources and Applications for Wind Power, Princeton Univ. Environmental Institute, Princeton, US, 2008 [Google Scholar]
  4. Y.S.H. Najjar, M.S. Zaamout, Performance analysis of compressed air energy storage (CAES) plant for dry regions, Energy Convers. Manage. 39 (1998) 1503–1511 [CrossRef] [Google Scholar]
  5. H. Lund, G. Salgi, The role of compressed air energy storage (CAES) in future sustainable energy systems, Energy Convers. Manage. 50 (2009) 1172–1179 [CrossRef] [Google Scholar]
  6. J.J. Proczka, K. Muralidharan, D. Villela, J.H. Simmons, G. Frantziskonis, Guidelines for the pressure and efficient sizing of pressure vessels for compressed air energy storage, Energy Convers. Manage. 65 (2013) 597–605 [CrossRef] [Google Scholar]
  7. Ke Yang, Yuan Zhang, Xuemei Li, Jianzhong Xu, Theoretical evaluation on the impact of heat exchanger in Advanced Adiabatic Compressed Air Energy Storage system, Energy Convers. Manage. 86 (2014) 1031–1044 [CrossRef] [Google Scholar]
  8. S. Wang, G. Chen, M. Fang, Q. Wang, A new Compressed Air Energy Storage refrigeration system, Energy Convers. Manage. 47 (2006) 3408–3416 [CrossRef] [Google Scholar]
  9. Y. Luo, L. Shi, G. Tu, Optimal sizing and control strategy of isolated grid with wind power and energy storage system, Energy Convers. Manage. 80 (2014) 407–415 [CrossRef] [Google Scholar]
  10. A. Bagdanavicius, N. Jenkins, Exergy and exergoeconomic analysis of a Compressed Air Energy Storage combined with a district energy system, Energy Convers. Manage. 77 (2014) 432–440 [CrossRef] [Google Scholar]
  11. P. Vadasz, Compressed Air Energy Storage: Optimal Performance and Techno-Economical Indices, Int. J. Appl. Thermodyn. 2 (1999) 69–80 [Google Scholar]
  12. P. Vadasz, A Performance Analysis of a Compressed Air Energy Storage System in Aquifer, Israel J. Technol. 25 (1989) 13–21 [Google Scholar]
  13. P. Vadasz, A Second-Order Marginal Costs Approximation for Energy Storage Charging and Discharging Price Functions, Trans. ASME 111 (1989) 154–159 [Google Scholar]
  14. M.H. Ahmadi, M.A. Ahmadi, M. Mehrpooya, H. Hosseinzade, M. Feidt, Thermodynamic and thermo-economic analysis and optimization of performance of irreversible four-temperature-level absorption refrigeration, Energy Conversion and Management 88 (2014) 1051–1059 [CrossRef] [Google Scholar]
  15. P. Vadasz, Analysis and Optimization of a Compressed Air Energy Storage System, Int. Gas Turbine Conference and Exhibit, Dusseldorf, Germany, 1986 [Google Scholar]
  16. Thermoflex User Manual, Thermoflow Inc., US, 2007, available at: www.thermoflow.com [Google Scholar]
  17. P. Vadasz, On the Optimal Location and Number of Intercoolers in a Real Compression Process, Gas Turbine and Aeroengine Congress, Amsterdam, Netherland, 1988 [Google Scholar]
  18. Y. Saboohi, Analysis of Energy Systems, Energy Engineering Department, Sharif Univ., Tehran, Iran, 2000 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.