Open Access
Mechanics & Industry
Volume 17, Number 1, 2016
Article Number 106
Number of page(s) 13
Published online 20 October 2015
  1. D. Cabrera, et al., Film pressure distribution in water-lubricated rubber journal bearings, Proc. Inst. Mech. Eng. 219 (2005) 125–132 [Google Scholar]
  2. P. Andersson, P. Lintula, Load-carrying capability of water-lubricated ceramic journal bearings, Tribol. Int. 27 (1994) 315–21 [CrossRef] [Google Scholar]
  3. M.M. Maru, et al., The Stribeck curve as a suitable characterization method of the lubricity of biodiesel and diesel blends, Energy 69 (2014) 673–681 [CrossRef] [Google Scholar]
  4. I. Faraon, D. Schipper, Stribeck curve for starved line contacts, J. Tribol. Trans. ASME 129 (2007) 181–187 [CrossRef] [Google Scholar]
  5. X.B. Lu, E. Gelinck, M. Khonsari, The Stribeck curve: experimental results and theoretical prediction, J. Tribol. Trans. ASME 128 (2006) 789–794 [CrossRef] [Google Scholar]
  6. E. Gelinck, D. Schipper, Calculation of Stribeck curves for line contacts, Tribol. Int. 33 (2000) 175–181 [CrossRef] [Google Scholar]
  7. M. Kalin, I. Velkavrh, Non-conventional inverse-Stribeck-curve behaviour and other characteristics of DLC coatings in all lubrication regimes, Wear 297 (2013) 911–918 [CrossRef] [Google Scholar]
  8. J. Wang, F. Yan, Q. Xue, Tribological behavior of PTFE sliding against steel in sea water, Wear 267 (2009) 1634–1641 [CrossRef] [Google Scholar]
  9. W. Huang, et al., The tribological performance of Ti(C,N)-based cermet sliding against Si3N4 in water, Wear 270 (2011) 682–687 [CrossRef] [Google Scholar]
  10. X. Lei, et al., Tribological behavior between micro- and nano-crystalline diamond films under dry sliding and water lubrication, Tribol. Int. 69 (2014) 118–127 [CrossRef] [Google Scholar]
  11. M. Masuko, et al., Friction characteristics of inorganic or organic thin coatings on solid surfaces under water lubrication, Tribol. Int. 39 (2006) 1601–1608 [CrossRef] [Google Scholar]
  12. C. Min, et al., Study of tribological properties of polyimide/graphene oxide nanocomposite films under seawater-lubricated condition, Tribol. Int. 80 (2014) 131–140 [CrossRef] [Google Scholar]
  13. A. Abdelbary, et al., The effect of surface defects on the wear of Nylon 66 under dry and water lubricated sliding, Tribol. Int. 59 (2013) 163–169 [CrossRef] [Google Scholar]
  14. A. de Kraker, R.A.J. van Ostayen, D.J. Rixen, Calculation of Stribeck curves for (water) lubricated journal bearings, Tribol. Int. 40 (2007) 459–469 [CrossRef] [Google Scholar]
  15. M. Kalin, I. Velkavrh, J. Vižintin, The Stribeck curve and lubrication design for non-fully wetted surfaces, Wear 267 (2009) 1232–1240 [CrossRef] [Google Scholar]
  16. D.C. Tretheway, C.D. Meinhart. Apparent fluid slip at hydrophobic microchannel walls, Phys. Fluid 14 (2002) L9–L12 [CrossRef] [Google Scholar]
  17. C.-H. Choi, K.J.A. Westin, K.S. Breuer, Apparent slip flows in hydrophilic and hydrophobic microchannels, Phys. Fluid 15 (2003) 2897–2902 [CrossRef] [Google Scholar]
  18. C. Neto, et al., Boundary slip in Newtonian liquids: a review of experimental studies, Rep. Prog. Phys. 68 (2005) 2859 [Google Scholar]
  19. C. Neto, V Craig, D. Williams, Evidence of shear-dependent boundary slip in Newtonian liquids, Eur. Phys. J. E 12 (2003) 71–74 [CrossRef] [EDP Sciences] [Google Scholar]
  20. O.I. Vinogradova, Slippage of water over hydrophobic surfaces, Int. J. Miner. Process. 56 (1999) 31–60 [Google Scholar]
  21. S. Granick, Y. Zhu, H. Lee, Slippery questions about complex fluids flowing past solids, Nat. Mater. 2 (2003) 221–227 [CrossRef] [PubMed] [Google Scholar]
  22. H.A. Spikes, The half-wetted bearing. Part 1: extended Reynolds equation, Proc. Inst. Mech. Eng. 217 (2003) 1–14 [CrossRef] [Google Scholar]
  23. F. Aurelian, M. Patrick, H. Mohamed, Wall slip effects in (elasto) hydrodynamic journal bearings, Tribol. Int. 44 (2011) 868–877 [CrossRef] [Google Scholar]
  24. H. Zhang, et al., Boundary slip surface design for high speed water lubricated journal bearings, Tribol. Int. 79 (2014) 32–41 [CrossRef] [Google Scholar]
  25. F. Guo, et al., Occurrence of wall slip in elastohydrodynamic lubrication contacts, Tribol. Lett. 34 (2009) 103–111 [CrossRef] [Google Scholar]
  26. C.W. Wu, Performance of hydrodynamic lubrication journal bearing with a slippage surface, Ind. Lubr. Tribol. 60 (2008) 293–298 [CrossRef] [Google Scholar]
  27. S. Hatzikiriakos, J. Dealy, Wall slip of molten high density polyethylene. I. Sliding plate rheometer studies, J. Rheol. 35 (1991) 497–523 [CrossRef] [Google Scholar]
  28. S.G. Hatzikiriakos, J.M. Dealy, Wall slip of molten high density polyethylenes. II. Capillary rheometer studies, J. Rheol. 36 (1992) 703–741 [CrossRef] [Google Scholar]
  29. M. Kaneta, H. Nishikawa, K. Kameishi, Observation of wall slip in elastohydrodynamic lubrication, J. Tribol. Trans. ASME 112 (1990) 447–452 [CrossRef] [Google Scholar]
  30. S. Richardson, On the no-slip boundary condition, J. Fluid. Mech. 59 (1973) 707–719 [CrossRef] [Google Scholar]
  31. T. Chung, Computational fluid dynamics, Cambridge University Press, New York, 2010 [Google Scholar]
  32. A.Z. Szeri, Fluid film lubrication: theory and design, Cambridge University Press, New York, 2005 [Google Scholar]
  33. A.Z. Szeri, Fluid film lubrication, Cambridge University Press, New York, 2011, Vol. 2 [Google Scholar]
  34. G. Stachowiak, A.W. Batchelor, Engineering Tribology, Butterworth-Heinemann, Oxford, 2013 [Google Scholar]
  35. A. Fatu, D. Bonneau, R. Fatu, Computing hydrodynamic pressure in mixed lubrication by modified Reynolds equation, Proc. Inst. Mech. Eng. 226 (2012) 1074–1094 [CrossRef] [Google Scholar]
  36. G.J. Ma, C.W. Wu, P. Zhou, Influence of wall slip on the hydrodynamic behavior of a two-dimensional slider bearing, Acta Mech. Sin. 23 (2007) 655–661 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.