Open Access
Issue
Mechanics & Industry
Volume 17, Number 1, 2016
Article Number 106
Number of page(s) 13
DOI https://doi.org/10.1051/meca/2015039
Published online 20 October 2015
  1. D. Cabrera, et al., Film pressure distribution in water-lubricated rubber journal bearings, Proc. Inst. Mech. Eng. 219 (2005) 125–132 [CrossRef]
  2. P. Andersson, P. Lintula, Load-carrying capability of water-lubricated ceramic journal bearings, Tribol. Int. 27 (1994) 315–21 [CrossRef]
  3. M.M. Maru, et al., The Stribeck curve as a suitable characterization method of the lubricity of biodiesel and diesel blends, Energy 69 (2014) 673–681 [CrossRef]
  4. I. Faraon, D. Schipper, Stribeck curve for starved line contacts, J. Tribol. Trans. ASME 129 (2007) 181–187 [CrossRef]
  5. X.B. Lu, E. Gelinck, M. Khonsari, The Stribeck curve: experimental results and theoretical prediction, J. Tribol. Trans. ASME 128 (2006) 789–794 [CrossRef]
  6. E. Gelinck, D. Schipper, Calculation of Stribeck curves for line contacts, Tribol. Int. 33 (2000) 175–181 [CrossRef]
  7. M. Kalin, I. Velkavrh, Non-conventional inverse-Stribeck-curve behaviour and other characteristics of DLC coatings in all lubrication regimes, Wear 297 (2013) 911–918 [CrossRef]
  8. J. Wang, F. Yan, Q. Xue, Tribological behavior of PTFE sliding against steel in sea water, Wear 267 (2009) 1634–1641 [CrossRef]
  9. W. Huang, et al., The tribological performance of Ti(C,N)-based cermet sliding against Si3N4 in water, Wear 270 (2011) 682–687 [CrossRef]
  10. X. Lei, et al., Tribological behavior between micro- and nano-crystalline diamond films under dry sliding and water lubrication, Tribol. Int. 69 (2014) 118–127 [CrossRef]
  11. M. Masuko, et al., Friction characteristics of inorganic or organic thin coatings on solid surfaces under water lubrication, Tribol. Int. 39 (2006) 1601–1608 [CrossRef]
  12. C. Min, et al., Study of tribological properties of polyimide/graphene oxide nanocomposite films under seawater-lubricated condition, Tribol. Int. 80 (2014) 131–140 [CrossRef]
  13. A. Abdelbary, et al., The effect of surface defects on the wear of Nylon 66 under dry and water lubricated sliding, Tribol. Int. 59 (2013) 163–169 [CrossRef]
  14. A. de Kraker, R.A.J. van Ostayen, D.J. Rixen, Calculation of Stribeck curves for (water) lubricated journal bearings, Tribol. Int. 40 (2007) 459–469 [CrossRef]
  15. M. Kalin, I. Velkavrh, J. Vižintin, The Stribeck curve and lubrication design for non-fully wetted surfaces, Wear 267 (2009) 1232–1240 [CrossRef]
  16. D.C. Tretheway, C.D. Meinhart. Apparent fluid slip at hydrophobic microchannel walls, Phys. Fluid 14 (2002) L9–L12 [CrossRef]
  17. C.-H. Choi, K.J.A. Westin, K.S. Breuer, Apparent slip flows in hydrophilic and hydrophobic microchannels, Phys. Fluid 15 (2003) 2897–2902 [CrossRef]
  18. C. Neto, et al., Boundary slip in Newtonian liquids: a review of experimental studies, Rep. Prog. Phys. 68 (2005) 2859 [CrossRef]
  19. C. Neto, V Craig, D. Williams, Evidence of shear-dependent boundary slip in Newtonian liquids, Eur. Phys. J. E 12 (2003) 71–74 [CrossRef] [EDP Sciences]
  20. O.I. Vinogradova, Slippage of water over hydrophobic surfaces, Int. J. Miner. Process. 56 (1999) 31–60 [CrossRef]
  21. S. Granick, Y. Zhu, H. Lee, Slippery questions about complex fluids flowing past solids, Nat. Mater. 2 (2003) 221–227 [CrossRef] [PubMed]
  22. H.A. Spikes, The half-wetted bearing. Part 1: extended Reynolds equation, Proc. Inst. Mech. Eng. 217 (2003) 1–14 [CrossRef]
  23. F. Aurelian, M. Patrick, H. Mohamed, Wall slip effects in (elasto) hydrodynamic journal bearings, Tribol. Int. 44 (2011) 868–877 [CrossRef]
  24. H. Zhang, et al., Boundary slip surface design for high speed water lubricated journal bearings, Tribol. Int. 79 (2014) 32–41 [CrossRef]
  25. F. Guo, et al., Occurrence of wall slip in elastohydrodynamic lubrication contacts, Tribol. Lett. 34 (2009) 103–111 [CrossRef]
  26. C.W. Wu, Performance of hydrodynamic lubrication journal bearing with a slippage surface, Ind. Lubr. Tribol. 60 (2008) 293–298 [CrossRef]
  27. S. Hatzikiriakos, J. Dealy, Wall slip of molten high density polyethylene. I. Sliding plate rheometer studies, J. Rheol. 35 (1991) 497–523 [CrossRef]
  28. S.G. Hatzikiriakos, J.M. Dealy, Wall slip of molten high density polyethylenes. II. Capillary rheometer studies, J. Rheol. 36 (1992) 703–741 [CrossRef]
  29. M. Kaneta, H. Nishikawa, K. Kameishi, Observation of wall slip in elastohydrodynamic lubrication, J. Tribol. Trans. ASME 112 (1990) 447–452 [CrossRef]
  30. S. Richardson, On the no-slip boundary condition, J. Fluid. Mech. 59 (1973) 707–719 [CrossRef]
  31. T. Chung, Computational fluid dynamics, Cambridge University Press, New York, 2010
  32. A.Z. Szeri, Fluid film lubrication: theory and design, Cambridge University Press, New York, 2005
  33. A.Z. Szeri, Fluid film lubrication, Cambridge University Press, New York, 2011, Vol. 2
  34. G. Stachowiak, A.W. Batchelor, Engineering Tribology, Butterworth-Heinemann, Oxford, 2013
  35. A. Fatu, D. Bonneau, R. Fatu, Computing hydrodynamic pressure in mixed lubrication by modified Reynolds equation, Proc. Inst. Mech. Eng. 226 (2012) 1074–1094 [CrossRef]
  36. G.J. Ma, C.W. Wu, P. Zhou, Influence of wall slip on the hydrodynamic behavior of a two-dimensional slider bearing, Acta Mech. Sin. 23 (2007) 655–661 [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.