Open Access
Issue
Mechanics & Industry
Volume 17, Number 1, 2016
Article Number 107
Number of page(s) 11
DOI https://doi.org/10.1051/meca/2015051
Published online 20 October 2015
  1. M. Koizumi, FGM activities in Japan, Compos. Part B Eng. 8368 (1997) 1–4 [CrossRef] [Google Scholar]
  2. R.K. Kaul, V. Cadambe, The natural frequencies of thin skew plates, Aeronaut. Q. 7 (1956) 337–352 [Google Scholar]
  3. C.M. Wang, K.K. Ang, L. Yang, E. Watanabe, Free Vibration of Skew Sandwich Plates With Laminated Facings, J. Sound Vib. 235 (2000) 317–340 [CrossRef] [Google Scholar]
  4. K.S. Woo, C.H. Hong, P.K. Basu, C.G. Seo, Free vibration of skew Mindlin plates by p-version of FEM, J. Sound Vib. 268 (2003) 637–656 [CrossRef] [Google Scholar]
  5. X. Zhao, Y.Y. Lee, K.M.Ã. Liew, Free vibration analysis of functionally graded plates using the element-free kp -Ritz method, J. Sound Vib. 319 (2009) 918–939 [CrossRef] [Google Scholar]
  6. Ö. Civalek, Nonlinear analysis of thin rectangular plates on Winkler-Pasternak elastic foundations by DSC-HDQ methods, Appl. Math. Model. 31 (2007) 606–624 [CrossRef] [Google Scholar]
  7. H. Akhavan, S. Hosseini Hashemi, H.R. Damavandi Taher, a. Alibeigloo, S. Vahabi, Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part I: Buckling analysis. Comput. Mater. Sci. 44 (2009) 968–978 [CrossRef] [Google Scholar]
  8. H.A. Atmane, A. Tounsi, I. Mechab, E.A.A. Bedia, Free vibration analysis of functionally graded plates resting on Winkler-Pasternak elastic foundations using a new shear deformation theory, Int. J. Mech. Mater. Des. 6 (2010) 113–121 [CrossRef] [Google Scholar]
  9. A. Joodaky, I. Joodaky, M. Hedayati, R. Masoomi, E. Borzabadi, Deflection and stress analysis of thin FGM skew plates on Winkler foundation with various boundary conditions using extended Kantorovich method, Compos. Part B. 51 (2013) 191–196 [CrossRef] [Google Scholar]
  10. A. Fekrar, M.S.A. Houari, A. Tounsi, S.R. Mahmoud, A new five-unknown refined theory based on neutral surface position for bending analysis of exponential graded plates, Meccanica 49 (2014) 795–810 [CrossRef] [Google Scholar]
  11. Y. Benveniste, A new approach to the application of Mori-Tanaka’s theory in composite materials, Mech. Mater. 6 (1987) 147–157 [CrossRef] [Google Scholar]
  12. Z. Belabed, M.S. Ahmed Houari, A. Tounsi, S.R. Mahmoud, O. Anwar Bég, An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates, Compos. Part B Eng. 60 (2014) 274–283 [CrossRef] [Google Scholar]
  13. S.A. Yahia, H.A. Atmane, M.S.A. Houari, A. Tounsi, Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories, Struct. Eng. Mech. 53 (2015) 1143–1165 [CrossRef] [Google Scholar]
  14. A.A. Bousahla, M.S.A. Houari, A. Tounsi, E.A. Adda Bedia, a Novel Higher Order Shear and Normal Deformation Theory Based on Neutral Surface Position for Bending Analysis of Advanced Composite Plates, Int. J. Comput. Methods. 11 (2014) 1350082 [CrossRef] [MathSciNet] [Google Scholar]
  15. L.O. Larbi, A. Kaci, M.S.A. Houari, A. Tounsi, An Efficient Shear Deformation Beam Theory Based on Neutral Surface Position for Bending and Free Vibration of Functionally Graded Beams #, Mech. Based Des. Struct. Mach. 41 (2013) 421–433 [CrossRef] [Google Scholar]
  16. S.A. Eftekhari, A.A. Jafari, Modified mixed Ritz-DQ formulation for free vibration of thick rectangular and skew plates with general boundary conditions, Appl. Math. Model. 37 (2013) 7398–7426 [CrossRef] [Google Scholar]
  17. R.B. Bhat, Natural frequencies of rectangular plates using characteristic orthogonal polynomials in Rayleigh-Ritz method, J. Sound Vib. 102 (1985) 493–499 [CrossRef] [Google Scholar]
  18. O. Beslin, J. Nicolas, A hierarchical functions set for predicting very high order plate bending modes with any boundary conditions, J. Sound Vib. 202 (1997) 633–655 [CrossRef] [Google Scholar]
  19. J. Yang, H. Shen, Dynamic response of initially stressed functionally graded rectangular thin plates, Compos. Struct. 54 (2001) 497–508 [CrossRef] [Google Scholar]
  20. X. Wang, Y. Wang, Z. Yuan, Accurate vibration analysis of skew plates by the new version of the differential quadrature method, Appl. Math. Model. 38 (2014) 926–937 [CrossRef] [Google Scholar]
  21. A.W. Leissa, Vibration of Plates, NASA SP-160 (1969) [Google Scholar]
  22. B. Singh, S. Chakraverty, Flexural vibration of skew plates using boundary characteristic orthogonal polynomials in two variables, J. Sound Vib. 173 (1994) 157–178 [CrossRef] [Google Scholar]
  23. M.A.A. Meziane, H.H. Abdelaziz, A. Tounsi, An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions, J. Sandw. Struct. Mater. 16 (2014) 293–318 [CrossRef] [Google Scholar]
  24. K. Nedri, N. El Meiche, A. Tounsi, Free vibration analysis of laminated composite plates resting on elastic foundations by using a refined hyperbolic shear deformation theory, Mech. Compos. Mater. 49 (2014) 629–640 [CrossRef] [Google Scholar]
  25. B. Bouderba, M.S.A. Houari, A. Tounsi, Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations, Steel Compos. Struct. 14 (2013) 85–104 [CrossRef] [Google Scholar]
  26. S. Motaghian, M. Mofid, J.E. Akin, On the free vibration response of rectangular plates , partially supported on elastic foundation, Appl. Math. Model. 36 (2012) 4473–4482 [CrossRef] [Google Scholar]
  27. S.A. Sheikholeslami, A.R. Saidi, Vibration analysis of functionally graded rectangular plates resting on elastic foundation using higher-order shear and normal deformable plate theory, Compos. Struct. 106 (2013) 350–361 [CrossRef] [Google Scholar]
  28. D. Zhou, A general solution to vibrations of beams on variable Winkler elastic foundation, Comput. Struct. 47 (1993) 83–90 [CrossRef] [Google Scholar]
  29. S.C.Ã. Pradhan, T. Murmu, Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method, J. Sound Vib. 321 (2009) 342–362 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.