Open Access
Issue
Mechanics & Industry
Volume 17, Number 2, 2016
Article Number 206
Number of page(s) 15
DOI https://doi.org/10.1051/meca/2015057
Published online 01 February 2016
  1. F.E. Udwadia,Response of uncertain dynamic systems. i, Appl. Math. Comput. 22 (1987) 115–150 [CrossRef] [Google Scholar]
  2. F.E. Udwadia,Response of uncertain dynamic systems. ii, Appl. Math. Comput. 22 (1987) 151–187 [CrossRef] [Google Scholar]
  3. C. Heinkelé, S. Pernot, F. Sgard, C.-H. Lamarque, Vibration of an oscillator with random damping: Analytical expression for the probability density function, J. Sound Vib. 296 (2006) 383–400 [CrossRef] [Google Scholar]
  4. C. Heinkelé,Synthèse modale probabiliste – Théorie et applications,Ph.D. thesis, Ecole Centrale de Lyon, Université Claude Bernard-Lyon I-INSA Lyon, 2008 [Google Scholar]
  5. E. Pagnacco, R. Sampaio, E. Souza de Cursi,Multimodality of the frequency response functions of random linear mechanical systems,in: Proceedings of CILAMCE Iberian-Latin-American Congress on Computational Methods in Engineering, Rio de Janeiro, Brasil, 2009. [Google Scholar]
  6. E. Pagnacco, R. Sampaio, E. Souza de Cursi, Frequency response functions of random linear mechanical systems and propagation of uncertainties, Mecánica Computacional XXX (2011) 3359–3380 [Google Scholar]
  7. N. Wiener,The homogeneous chaos, Am. J. Math. 60 (1938) 897–936 [CrossRef] [MathSciNet] [Google Scholar]
  8. S.R. Winterstein, Moment-based Hermite models of random vibration, Technical Report 219, Dept. of Structural Engineering, Technical University of Denmark, Lyngby, Denmark, 1987, available at: http://sites.google.com/site/stevewinterstein/publications-1/archival-publications/papers-file-repository/papers-nonlinear-and-moment-based-load-models/Hermite˙Winterstein˙87.pdf?attredirects=0&d=1. [Google Scholar]
  9. S.R. Winterstein, Nonlinear vibration models for extremes and fatigue, J. Eng. Mech. 114 (1988) [Google Scholar]
  10. R.G. Ghanem, Pol D. Spanos, Stochastic Finite Elements: A Spectral Approach,Springer-Verlag, 1991 [Google Scholar]
  11. D. Xiu, G.E. Karniadakis, The Wiener–Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput. 24 (2002) 619–644 [CrossRef] [MathSciNet] [Google Scholar]
  12. O.G. Ernst, A. Mugler, H.-J. Starkloff, E. Ullmann, On the convergence of generalized polynomial chaos expansions, ESAIM: Math. Modell. Numer. Anal. 46 (2012) 317–339 [CrossRef] [EDP Sciences] [Google Scholar]
  13. X. Wan, G.E. Karniadakis, An adaptive multi-element generalized polynomial chaos method for stochastic differential equations, J. Comput. Phys. 209 (2005) 617–642 [CrossRef] [Google Scholar]
  14. X. Wan, G.E. Karniadakis, Beyond Wiener-Askey expansions: Handling arbitrary pdfs, J. Sci. Comput. 27 (2006) 455–464 [CrossRef] [Google Scholar]
  15. J. Foo, X. Wan, G.E. Karniadakis, The multi-element probabilistic collocation method (me-pcm): Error analysis and applications, J. Comput. Phys. 227 (2008) 9572−9595 [CrossRef] [Google Scholar]
  16. E. Pagnacco, E. Sarrouy, R. Sampaio, E. Souza de Cursi,Polynomial chaos for modeling multimodal dynamical systems – investigations on a single degree of freedom system,Mecánica Computacional XXXII (2013) 705–727 [Google Scholar]
  17. D. Lucor, G.E. Karniadakis, Adaptive generalized polynomial chaos for nonlinear random oscillators, SIAM J. Sci. Comput. 26 (2004) 720–735 [CrossRef] [Google Scholar]
  18. S. Finette,A stochastic representation of environmental uncertainty and its coupling to acoustic wave propagation in ocean waveguides, J. Acoust. Soc. Am. 120 (2006) 2567–2579 [CrossRef] [Google Scholar]
  19. E. Sarrouy, O. Dessombz, J-J. Sinou, Stochastic study of a non-linear self-excited system with friction, Eur. J. Mech. A 40 (2013) 1–10 [CrossRef] [Google Scholar]
  20. D. Xiu, G.E. Karniadakis, Modeling uncertainty in flow simulations via generalized polynomial chaos, J. Comput.l Phys. 187 (2003) 137–167 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.