Open Access
Mechanics & Industry
Volume 17, Number 2, 2016
Article Number 205
Number of page(s) 14
Published online 01 February 2016
  1. B. Hervé, J.-J. Sinou, H. Mahé, L. Jézéquel, Extension of the destabilization paradox to limit cycle amplitudes for a nonlinear self-excited system subject to gyroscopic and circulatory actions, J. Sound Vibr. 323 (2009) 944–973 [Google Scholar]
  2. L. Nechak, S. Berger, E. Aubry, Non-intrusive generalized polynomial chaos for the robust stability analysis of uncertain nonlinear dynamic friction systems, J. Sound Vibr. 332 (2013) 1204–1215 [Google Scholar]
  3. Wickramarachi P., Singh R. Analysis of friction induced vibration leading to Eek Noise in a dry friction clutch. Proc. Internoise, 2002 [Google Scholar]
  4. G. Fritz, J.-J. Sinou, J.-M. Duffal, L. Jézéquel, Investigation of the relationship between damping and mode-coupling patterns in case of break squeal, J. Sound Vibr. 307 (2007) 591–609 [Google Scholar]
  5. N. Hoffmann, L. Gaul, Effects of damping on mode-coupling instability in friction induced oscillations, ZAMM Z. Angew. Math. Mech. 83 (2003) 524–534 [CrossRef] [Google Scholar]
  6. R.H. Cameron, W.T. Martin, The orthogonal development of nonlinear functionals in series of Fourier-Hermite functionals, Ann. Math. 48 (1947) 385 [CrossRef] [Google Scholar]
  7. G. Fritz, J.-J. Sinou, J.-M. Duffal, L. Jézéquel, Effects of damping on brake squeal coalescence patterns application on a finite element model, Mech. Res. Commun. 34 (2007) 181–190 [CrossRef] [Google Scholar]
  8. L. Nechak, S. Berger, E. Aubry, Prediction of random self friction-induced vibrations in uncertain dry friction systems using a multi-element generalized polynomial chaos approach, ASME J. Vibr. Acoust. 134 (2012) [Google Scholar]
  9. L. Nechak, S. Berger, E. Aubry, A polynomial chaos approach to the robust analysis of the dynamic behavior of friction systems, Eur. J. Mech. A/Solids 30 (2011) 594−607 [Google Scholar]
  10. X. Wan, G. Karniadakis, An Adaptive Multi-Element Generalized Polynomial Chaos Method for Stochastic Differential Equations, J. Comput. Phys. 209 (2005) 617−642 [CrossRef] [Google Scholar]
  11. E. Sarrouy, O. Dessombz, J.-J. Sinou, Piecewise polynomial chaos expansion with an application to brake squeal of a linear brake system, J. Sound Vibr. 332 (2013) 577−594 [Google Scholar]
  12. B. Hervé, J.-J. Sinou, H. Mahé, L. Jézéquel, Analysis of Squeal Noise in Clutches and Mode Coupling Instabilities including Damping and Gyroscopic Effects, Eur. J. Mech. A-Solids 27 (2008) 141–160 [Google Scholar]
  13. F. Chevillot, J.-J. Sinou, G.-B. Mazet, N. Hardouin, L. Jézéquel, The destabilization paradox applied to friction induced vibrations in an aircraft braking system, Arch. Appl. Mech. 78 (2008), 949–963 [CrossRef] [Google Scholar]
  14. R.A. Schutz, Statistique, algèbre de Boole, numération appliquées au traitement pratique de l’information, Alpha. DS, 1985 [Google Scholar]
  15. D. Centea, H. Rahnejat, M.T. Menday, Non-linear multi-body dynamic analysis for the study of clutch torsional vibrations (judder), Appl. Math. Modell. 25 (2011) 177−192 [Google Scholar]
  16. G. Chevallier, F. Macewko, F. Robbe-Valloire, Dynamic friction evolution during transient sliding speed, Tribology Series, 43, transient processes in tribology (2004) [Google Scholar]
  17. G. Chevallier, D. Le Nizerhy, F. Robbe-Valloire, F. Macewko, Chattering instabilities: study of a clutch system, Proc. EURODYN Paris, 2005 [Google Scholar]
  18. L. Nechak, S. Berger, E. Aubry, Robust Analysis of Uncertain Dynamic Systems: Combination of the Centre Manifold and Polynomial chaos theories, WSEAS Transactions on Systems 9 (2010) 386–395 [Google Scholar]
  19. X. Wan, G. Karniadakis, Multi-element generalized polynomial chaos for arbitrary probability measures, SIAM J. Sci. Comput. 28 (2006) 901–928 [CrossRef] [Google Scholar]
  20. B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models: Contributions to structural reliability and stochastic spectral methods, Mémoires HDR, Université Blaise Pascal, Clermont-Ferrand II, 2007 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.