Open Access
Issue
Mechanics & Industry
Volume 17, Number 2, 2016
Article Number 209
Number of page(s) 8
DOI https://doi.org/10.1051/meca/2015046
Published online 08 February 2016
  1. A. Bejan, Entropy Generation Minimization, CRC Press, Boca Raton FL, 1996 [Google Scholar]
  2. R.S. Berry, V.A. Kazakov, S. Sieniutycz, Z. Szwast, A.M. Tsirlin, Thermodynamic Optimization of Finite Time Processes, Wiley, Chichester, 1999 [Google Scholar]
  3. L. Chen, C. Wu, F. Sun, Finite time thermodynamics optimization or entropy generation minimization of energy systems, J. Non-Equilibrium Thermodyn. 24 (1999) 327 [Google Scholar]
  4. C. Wu, L. Chen, J. Chen, (eds.), Recent Advances in Finite Time Thermodynamics, Nova Science Publishers, New York, 1999 [Google Scholar]
  5. B. Sahin, A. Kodal, H. Yavuz, Maximum power density analysis of an endoreversible Carnot heat engine, Energy, Int. 21 (1996) 1219 [Google Scholar]
  6. L. Berrin, A. Sisman, H. Yavuz, Analysis of Ericsson cycle at maximum power density conditions, ECOS 1996, pp. 25–27 [Google Scholar]
  7. L. Chen, J. Lin, F. Sun, C. Wu, Efficiency of an Atkinson engine at maximum power density, Energy Convers. Mgmt. 39 (1998) 337 [CrossRef] [Google Scholar]
  8. H. L. Yavuz, L.B. Erbay, General performance characteristics of an Ericsson refrigerator, ECOS 1998, Nancy, France, pp. 565–571 [Google Scholar]
  9. L.B. Erbay and H. Yavuz, The maximum cooling density of a realistic Stirling refrigerator, J. Phys. D. 31 (1998) 291 [CrossRef] [Google Scholar]
  10. J.A. Mc Cormick, Progress on the development of miniature turbo-machines for low capacity reverse Brayton cryocooler, Proc. 9-th Int. Cryocooler Conf., 1996 [Google Scholar]
  11. L.G. Chen, C. Wu, F.R. Sun, Finite time thermodynamic optimization or entropy generation minimization of energy system, J. Non-Equil. Thermodyn. 24 (2005) 327−359 [Google Scholar]
  12. L.G. Chen, L. Zhang, F.R. Sun, Power, efficiency, entropy-generation rate and ecological Optimization for a class of generalized irreversible universal heat-engine cycles, Appl. Energy84 (2007) 512–525 [CrossRef] [Google Scholar]
  13. A. Durmayaz, O.S. Sogut, B. Sahin, H. Yavuz, Optimization of thermal systems based on finite-time thermodynamics and thermoeconomics, Prog. Energy Combust. Sci. 30 (2004) 175–21 [CrossRef] [Google Scholar]
  14. C.K. Chen, Y.F. Su, Exergetic efficiency optimization for an irreversible Brayton refrigeration cycle, Int. J. Therm. Sci. 44 (2005) 303–310 [CrossRef] [Google Scholar]
  15. Y. Tu, L.G. Chen, F.R. Sun, C. Wu, Cooling load and efficient of performance optimizations for real air-refrigerators, Appl. Energy83 (2006) 1289–1306 [CrossRef] [Google Scholar]
  16. X.Q. Zhu, L.G. Chen, F.R. Sun, C. Wu, Effect of heat transfer law on the ecological optimization of a generalized irreversible Carnot heat pump, Int. J. Exergy2 (2005) 423–436 [Google Scholar]
  17. L.G. Chen, X.Q. Zhu, F.R. Sun, C. Wu, Ecological optimization of a generalized irreversible Carnot refrigerator for a generalized heat transfer law, Int. J. Ambient Energy28 (2007) 213–219 [CrossRef] [Google Scholar]
  18. X.Q. Zhu, L.G. Chen, F.R. Sun, C. Wu, Exergy based ecological optimization for a generalized irreversible Carnot refrigerator, J. Energy Inst. 79 (2006) 42–46 [CrossRef] [Google Scholar]
  19. L.G. Chen, J. Li, F.R. Sun, Generalized irreversible heat-engine experiencing a complex heat-transfer law, Appl. Energy85 (2008) 52–60 [CrossRef] [Google Scholar]
  20. J. Chen, X. Chen, C. Wu, Optimization of rate of exergy output of a multistage endoreversible combined refrigeration system, Exergy 1 (2001) 100–106 [CrossRef] [Google Scholar]
  21. T. Morosuk, G. Tsatsaronis, Advanced exergetic evaluation of refrigeration machines using different working fluids, Energy 34 (2009) 2248–2258 [CrossRef] [Google Scholar]
  22. Y. Ust, Performance analysis and optimization of irreversible air refrigeration cycles based on ecological coefficient of performance criterion, Appl. Therm. Eng. 29 (2009) 47–55 [CrossRef] [Google Scholar]
  23. F. Angulo-Brown, An ecological optimization criterion for finite-time heat engines, J. Appl. Phys. 69 (1991) 7465–7469 [CrossRef] [Google Scholar]
  24. Z. Yan, Comment on ecological optimization criterion for finite-time heat-engines, J. Appl. Phys. 73 (1993) 3583 [CrossRef] [Google Scholar]
  25. D.A.V. Veldhuizen, G.B. Lamont, Multi-objective Evolutionary Algorithms: Analyzing the State-of-the-Art, Evolutionary Computation 8 (2000) 125–147 [Google Scholar]
  26. A. Konak, D.W. Coit, A.E. Smith, Multi-objective optimization using genetic algorithms: A tutorial, Reliability Engineering & System Safety 91 (2006) 992–1007 [Google Scholar]
  27. T. Bck, D. Fogel, Z. Michalewicz, Handbook of evolutionary computation, Oxford Univ., Press, 1997 [Google Scholar]
  28. M.H. Ahmadi, H. Hosseinzade, H. Sayyaadi, A.H. Mohammadi, F. Kimiaghalam, Application of the multi-objective optimization method for designing a powered Stirling heat engine: design with maximized power, thermal efficiency and minimized pressure loss, Renew. Energy 60 (2013) 313–22 [Google Scholar]
  29. M.H. Ahmadi, H. Sayyaadi, A.H. Mohammadi, A. Marco, Barranco-Jimenez. Thermo-economic multi-objective optimization of solar dish-Stirling engine by implementing evolutionary algorithm, Energy Convers. Manag. 73 (2013) 370–380 [Google Scholar]
  30. M.H. Ahmadi, M.A. Ahmadi, A.H. Mohammadi, M. Mehrpooya, M. Feidt, Thermodynamic optimization of Stirling heat pump based on multiple criteria, Energy Convers. Manag. 80 (2014) 319–328 [Google Scholar]
  31. A. Lazzaretto, A. Toffolo, Energy, economy and environment as objectives in multi-criterion optimization of thermal systems design, Energy 29 (2004) 1139–1157 [CrossRef] [Google Scholar]
  32. M.H. Ahmadi, M.A. Ahmadi, A.H. Mohammadi, M. Feidt, S.M. Pourkiaei, Multi-objective optimization of an irreversible Stirling cryogenic refrigerator cycle, Energy Convers. Manage. 82 (2014) 351–360 [CrossRef] [Google Scholar]
  33. M.H. Ahmadi, A.H. Mohammadi, S. Dehghani, Evaluation of the maximized power of a regenerative endoreversible Stirling cycle using the thermodynamic analysis, Energy Convers. Manage. 76 (2013) 561–570 [CrossRef] [Google Scholar]
  34. S. Toghyani, A. Kasaeian, M.H. Ahmadi, Multi-objective optimization of Stirling engine using non-ideal adiabatic method, Energy Convers. Manage. 80 (2014) 54-62 [Google Scholar]
  35. H. Sayyaadi, M.H. Ahmadi, S. Dehghani, Optimal Design of a Solar-Driven Heat Engine Based on Thermal and Ecological Criteria, J. Energy Eng. (2014), DOI: 10.1061/(ASCE)EY.1943-7897.0000191, 04014012 [Google Scholar]
  36. H. Sahraie, M.R. Mirani, M.H. Ahmadi, M. Ashouri, Thermo-economic and thermodynamic analysis and optimization of a two-stage irreversible heat pump, Energy Convers. Manage. 99 (2015) 81–91 [CrossRef] [Google Scholar]
  37. M.H. Ahmadi, M.A. Ahmadi, M. Mehrpooya, H. Hosseinzade, M. Feidt, Thermodynamic and thermoeconomic analysis and optimization of performance of irreversible four-temperature-level absorption refrigeration, Energy Convers. Manage. 88 (2014) 1051–1059 [CrossRef] [Google Scholar]
  38. M.H. Ahmadi, M.A. Ahmadi, Thermodynamic analysis and optimization of an irreversible Ericsson cryogenic refrigerator cycle, Energy Convers. Manage. 89 (2015) 147−55 [CrossRef] [Google Scholar]
  39. M.H. Ahmadi, M.A. Ahmadi, M. Mehrpooya, M. Sameti, Thermo-ecological analysis and optimization performance of an irreversible three-heat-source absorption heat pump, Energy Convers. Manage. 90 (2015) 175–183 [Google Scholar]
  40. M.H. Ahmadi, M.A. Ahmadi, M. Feidt, Performance optimization of a solar-driven multi-step irreversible Brayton cycle based on a multi-objective genetic algorithm. Oil & Gas Science and Technology – Rev. IFP Energies nouvelles 2014. http://dx.doi.org/10.2516/ogst/2014028 [Google Scholar]
  41. M.H. Ahmadi, M.A. Ahmadi, M. Feidt, Thermodynamic analysis and evolutionary algorithm based on multi-objective optimization of performance for irreversible four-temperature-level refrigeration, Mechanics & Industry 16 (2015) 207 [CrossRef] [EDP Sciences] [Google Scholar]
  42. S.A. Sadatsakkak, M.H. Ahmadi, M.A. Ahmadi, Thermodynamic and thermo-economic analysis and optimization of an irreversible regenerative closed Brayton cycle, Energy Convers. Manage. 94 (2015) 124–129 [CrossRef] [Google Scholar]
  43. S.A. Sadatsakkak, et al., Optimization density power and thermal efficiency of an endoreversible Braysson cycle by using non-dominated sorting genetic algorithm, Energy Convers. Manage. 93 (2015) 31–39 [CrossRef] [Google Scholar]
  44. S.A. Sadatsakkak, M.H. Ahmadi, M.A. Ahmadi, Optimization performance and thermodynamic analysis of an irreversible nano scale Brayton cycle operating with Maxwell–Boltzmann gas, Energy Convers. Manage. 101 (2015) 592–605 [CrossRef] [Google Scholar]
  45. L.G. Chen, F.R. Sun, C. Wu, Ecological optimization criteria for an endoreversible Carnot refrigerator (in Chinese), Nat. J. 15 (1992) [Google Scholar]
  46. J.M. Gordon, K.C. Ng, Thermodynamic modeling of reciprocating chillers, J. Appl. Phys. 75 (1994) 2769–2774 [CrossRef] [Google Scholar]
  47. F.R. Sun, C. Wu, L.G. Chen, Optimal performance and rate of entropy production for forward and reverse irreversible Carnot cycles, Chin. J. Eng. Thermophys. 12 (1991) 357–360 [Google Scholar]
  48. M.M. Ait-Ali, A class of internally irreversible refrigeration cycles. J. Phys. D29 (1996) 593–599 [Google Scholar]
  49. M.M. Ait-Ali, The maximum coefficient of performance of internally irreversible refrigerators and heat pumps, J. Phys. D 29 (1996) 975–980 [CrossRef] [Google Scholar]
  50. L.G. Chen, X. Zhu, F.R. Sun, C. Wu, Ecological optimization for generalized irreversible Carnot refrigerators, J. Phys. D35 (2005) 113–118 [Google Scholar]
  51. J. Xu, L. Pang, J. Wang, Performance Optimization of Generalized Irreversible Refrigerator Based on a New Ecological Criterion, Entropy 15 (2013) 5277–5291 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.