Issue
Mechanics & Industry
Volume 17, Number 2, 2016
Discrete Simulation of Fluid Dynamics
Article Number 203
Number of page(s) 11
DOI https://doi.org/10.1051/meca/2015071
Published online 01 February 2016
  1. V. Staněk, B.Q. Li, J. Szekely, Mathematical Model of a Cupola Furnace-Part I: Formulation and an Algorithm to Solve the Model, AFS Transactions 100 (1992) 425–437 [Google Scholar]
  2. R. Leth-Miller, A.D. Jensen, P. Glarborg, L.M. Jensen, P.B. Hansen, P. B., S.B. Jørgensen, Investigation of a mineral melting cupola furnace. Part II. Mathematical modeling, Indust. Eng. Chem. Res. 42 (2003) 6880–6892 [CrossRef] [Google Scholar]
  3. R. Straka, T. Telejko, 1D Mathematical Model of Coke Combustion, IAENG Int. J. Appl. Math. 45 (2015) 245–248 [Google Scholar]
  4. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Clarendon, Oxford, 2001 [Google Scholar]
  5. D. Yu, R. Mei, L.S. Luo, W. Shyy, Viscous flow computations with the method of lattice Boltzmann equation, Progress Aerospace Sci. 39 (2003) 329–367 [CrossRef] [Google Scholar]
  6. F. Kuznik, C. Obrecht, G. Rusaouen, J.J. Roux, LBM based flow simulation using GPU computing processor, Comput. Math. Appl. 59 (2010) 2380–2392 [CrossRef] [Google Scholar]
  7. C. Obrecht, F. Kuznik, B. Tourancheau, J.J. Roux, The TheLMA project: A thermal lattice Boltzmann solver for the GPU, Comput. Fluids 54 (2012) 118–126 [CrossRef] [Google Scholar]
  8. N. Delbosc, J.L. Summers, A.I. Khan, N. Kapur, C.J. Noakes, Optimized implementation of the Lattice Boltzmann Method on a graphics processing unit towards real-time fluid simulation, Comput. Math. Appl. 67 (2014) 462–475 [CrossRef] [Google Scholar]
  9. M.J. Mawson, A.J. Revell, Memory transfer optimization for a lattice Boltzmann solver on Kepler architecture nVidia GPUs, Comput. Phys. Commun. 185 (2014) 2566–2574 [CrossRef] [Google Scholar]
  10. D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, L.S. Luo, Multiple-relaxation-time lattice Boltzmann models in three dimensions, Philos. Transa. R. Soc. London A 360 (2002) 437–51 [CrossRef] [MathSciNet] [Google Scholar]
  11. S.S. Chikatamarla, C.E. Frouzakis, I.V. Karlin, A.G. Tomboulides, K.B. Boulouchos, Lattice Boltzmann method for direct numerical simulation of turbulent flows, J. Fluid Mech. 656 (2010) 298–308 [CrossRef] [Google Scholar]
  12. M.C. Geier, Ab initio derivation of the cascaded lattice Boltzmann automaton, Ph.D. Thesis, University of Freiburg, 2006 [Google Scholar]
  13. C.K. Aidun, J.R. Clausen, Lattice-Boltzmann method for complex flows, Ann. Rev. Fluid Mech. 42 (2010) 439–472 [CrossRef] [Google Scholar]
  14. Z. Guo, C. Shu, Lattice Boltzmann method and its applications in engineering (advances in computational fluid dynamics), World Scientific Publishing Company, Singapore, 2013 [Google Scholar]
  15. A.A. Mohamad, Lattice Boltzmann Method, Springer-Verlag, London, 2011 [Google Scholar]
  16. M.C. Sukop, D.T. Thorne Jr., Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers, Springer-Verlag, New York, 2006 [Google Scholar]
  17. Y.H. Qian, Simulating thermohydrodynamics with lattice BGK models, J. Sci. Comput. 8 (1993) 231–242 [CrossRef] [Google Scholar]
  18. X. Shan, Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method, Phys. Rev. E 55 (1997) 2780–2788 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  19. X. He, S. Chen, G.D. Doolen, A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys. 146 (1998) 282–300 [CrossRef] [Google Scholar]
  20. Z. Guo, C. Zheng, B. Shi, T.S. Zhao, Thermal lattice Boltzmann equation for low Mach number flows: decoupling model, Phys. Rev. E 75 (2007) 036704 [CrossRef] [Google Scholar]
  21. I.V. Karlin, D. Sichau, S.S. Chikatamarla, Consistent two-population lattice Boltzmann model for thermal flows, Phys. Rev. E 88 (2013) 063310 [CrossRef] [Google Scholar]
  22. Z. Malinowski, M. Rywotycki, Modelling of the strand and mold temperature in the continuous steel caster, Arch. Civil Mech. Eng. 9 (2009) 59–73 [CrossRef] [Google Scholar]
  23. A. Szajding, T. Telejko, R. Straka, A. Goldasz, Experimental and numerical determination of heat transfer coefficient between oil and outer surface of monometallic tubes finned on both sides with twisted internal longitudinal fins, Int. J. Heat Mass Transfer 58 (2013) 395–401 [CrossRef] [Google Scholar]
  24. T. Telejko, A. Szajding, Heat exchange research of the both side finned tubes applied to the heat exchangers, Rynek Energii 5 (2011) 104–110 [Google Scholar]
  25. X. He, L.S. Luo, Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E 56 (1997) 6811–6817 [CrossRef] [Google Scholar]
  26. S. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows, Ann. Rev. Fluid Mech. 30 (1998) 329–364 [CrossRef] [Google Scholar]
  27. D. Hilbert, Mathematical problems, Bull. Am. Math. Soc. 8 (1902) 437–479 [CrossRef] [MathSciNet] [Google Scholar]
  28. X. He, L.S. Luo, Lattice Boltzmann model for the incompressible Navier-Stokes equation, J. Stat. Phys. 88 (1997) 927–944 [CrossRef] [Google Scholar]
  29. M.C. Geier, A. Greiner, J.G. Korvink, A factorized central moment lattice Boltzmann method, Eur. Phys. J.-Special Topics 171 (2009) 55–61 [CrossRef] [EDP Sciences] [Google Scholar]
  30. H. Yoshida, N. Makoto, Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation, J. Comput. Phys. 229 (2010) 7774–7795 [CrossRef] [Google Scholar]
  31. I. Ginzburg, Truncation errors, exact and heuristic stability analysis of two-relaxation-times lattice Boltzmann schemes for anisotropic advection-diffusion equation, Commun. Comput. Phys. 11 (2012) 1439–1502 [Google Scholar]
  32. NVIDIA Corporation, NVIDIA CUDA C Programming Guide v6.5, 2014 [Google Scholar]
  33. A. Meier, C. Winkler, D. Wuillemin, Experiment for modelling high temperature rock bed storage, Solar Energy Mater. 24 (1991) 255–264 [CrossRef] [Google Scholar]
  34. M. Hänchen, S. Brückner, A. Steinfeld, High-temperature thermal storage using a packed bed of rocks-heat transfer analysis and experimental validation, Appl. Thermal Eng. 31 (2011) 1798–1806 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.