Issue
Mechanics & Industry
Volume 17, Number 2, 2016
Discrete Simulation of Fluid Dynamics
Article Number 204
Number of page(s) 11
DOI https://doi.org/10.1051/meca/2015070
Published online 01 February 2016
  1. E. Verpoorte, Microfluidic Chips for Clinical and Forensic Analysis, Electrophoresis 23 (2002) 677–712 [CrossRef] [PubMed] [Google Scholar]
  2. P. Dario, N. Croce, M.C. Carrozza, G. Varallo, A Fluid Handling System for a Chemical Microanalyzer, J. Micromech. Microeng. 6 (1996) 95–98 [CrossRef] [Google Scholar]
  3. E.M.J. Verpoorte, B.H. Van Der Schoot, S. Jeanneret, A. Manz, H.M. Widmer, N.F. De Rooij, Three-dimensional micro flow manifolds for miniatured chemical analysis systems, J. Micromech. Microeng. 4 (1994) 246–256 [CrossRef] [Google Scholar]
  4. P.A. Auroux, D. Iossifidis, D.R. Reyes, A. Manz, Micro Total Analysis Systems.2.Analytical standard operations and applications, Anal. Chem. 74 (2002) 2637–2652 [CrossRef] [PubMed] [Google Scholar]
  5. P.A. Auroux, D. Iossifidis, D.R. Reyes, A. Manz, Micro total analysis systems.1. Introduction, theory, and technology, Anal. Chem. 74 (2002) 2623–2636 [Google Scholar]
  6. V. Singhal, S.V. Garimella, A. Raman, Microscale pumping technologies for microchannel cooling systems, BIRCK and NCN publications 57 (2004) 191–221 [Google Scholar]
  7. S.L. Zeng, C.H. Chen, J.C. Mikkelsen Jr, J.G. Santiago, Fabrication and characterization of electroosmotic micropumps, Sensors Act. B 79 (2001) 107–114 [CrossRef] [Google Scholar]
  8. V.L. Asuncion, P.L. Abraham, An AC magnetohydro dynamic micropump, Sensors Act. B 63 (2000) 178–185 [Google Scholar]
  9. F. Mugele, J. Baret, Electrowetting: from basics to applications, J. Phys.: Condens. Matter 17 (2005) 705–774 [CrossRef] [Google Scholar]
  10. P. Gravesen, J. Braebjerg, O.S. Jensen, Microfluidics – a Rev. J. Micromech. Microeng. 3 (1993) 168–182 [CrossRef] [Google Scholar]
  11. J. Dopper, M. Clemens, W. Ehrfeld, S. Jung, K. Kamper, H. Lehr, Micro gear pumps for dosing of viscous fluids, J. Micromech. Microeng. 7 (1997) 230–232 [CrossRef] [Google Scholar]
  12. A. Hatch, A.E. Kamholz, G. Holman, P. Yager, K.F. Bohringer, A ferrofluidic magnetic micropump, Microelectromech. System 10 (2001) 215–221 [Google Scholar]
  13. R. Wiederkehr, M. Salvadori, J. Brugger, F. Degasperi, M. Cattani, The gas flowrate increase obtained by an oscillating piezoelectric actuator on a micronozzle, Sensors Act. A 144 (2008) 154–160 [CrossRef] [Google Scholar]
  14. J. Dopper, M. Clemens, W. Ehrfeld, S. Jung, K. Kamper, H. Lehr, Micro gear pumps for dosing of viscous fluids, J. Micromech. Microeng. 7 (1997) 230–232 [CrossRef] [Google Scholar]
  15. C. Yamahata, M. Chastellain, V. Parashar, A. Petri, H. Hofmann, M. Gijs, Plastic micropump with ferrofluidic actuation, Microelectromech. System 14 (2005) 94–102 [Google Scholar]
  16. A. Olsson, G. Stemme, E. Stemme, A valve-less planar fluid pump with two pump chambers, Sensors Act. A 47 (1995) 549–556 [CrossRef] [Google Scholar]
  17. A. Olsson, P. Enoksson, G. Stemme, E. Stemme, Micromachined flat-walled valveless diffuser pumps, Microelectromech. System 6 (1997) 161–166 [CrossRef] [Google Scholar]
  18. E. Stemme, G. Stemme, A valveless diffuser/nozzle based fluid pump, Sensors Act. A 39 (1993) 159–167 [CrossRef] [Google Scholar]
  19. T. Gerlach, H. Wurmus, Working principle and performance of the dynamic micropump, Sensors Act. A 50 (1995) 135–140 [CrossRef] [Google Scholar]
  20. F.K. Forster, R.L. Bardell, M.A. Afromowitz, N.R. Sharma, Design fabrication and testing of fixed-valve micro-pumps, Proc. ASME Fluids Eng. Division 234 (1995) 39–44 [Google Scholar]
  21. I. Izzo, D. Accoto, A. Menciassi, L. Schmitt, P. Dario, Modeling and experimental validation of a piezoelectric micropump with novel no-moving-part valves, Sensors Act A 133 (2007) 128–140 [CrossRef] [Google Scholar]
  22. A. Fadl, S. Demming, Z. Zhang, S. Büttgenbach, M. Krafczyk, D.M. L. Meyer, A multifunction and bidirectional valve-less rectification micropump based on bifurcation geometry, Microfluidics and Nanofluidics 9 (2010) 267–280 [CrossRef] [Google Scholar]
  23. Z. Deng, X. He, S. Yang, F. Li, Orthogonal optimization design and experiment of oval composite tube in valveless piezoelectric Pump, Trans. Chinese Society Agricul. Mach. 44 (2013) 284–288 [Google Scholar]
  24. S. Yuan, S. Yang, X. He, Z. Deng, S. Cai, Design and experimental study of a novel three-way diffuser/nozzle elements employed in valveless piezoelectric micropumps, J. Brazilian Soc. Mech. Sci. Eng. DOI: 10.1007/s40430-014-0176-5 [Google Scholar]
  25. D.S. Lee, H.C. Yoon, J.S. Ko, Fabrication and characterization of a bidirectional valveless peristaltic micropump and its application to a flow-type immunoanalysis, Sensors Act. B 103 (2004) 409–415 [CrossRef] [Google Scholar]
  26. J.P. Choi, K.S. Kim, Y.H. Seo, B.H. Kim, Design and fabrication of synthetic Air-Jet Micropump, Int. J. Precision Eng. Manuf. 12 (2011) 355–360 [CrossRef] [Google Scholar]
  27. Y. Choe, E.S. Kim, Valveless micropump driven by acoustic streaming, J. Micromecha. Microeng. 23 (2013) 45005–45012 [CrossRef] [Google Scholar]
  28. K.S. Yang, I.Y. Chen, K.H. Chien, C.C. Wang, A numerical study of the nozzle/diffuser micropump, J. Mech. Eng. Sci. 222 (2008) 525–533 [CrossRef] [Google Scholar]
  29. D.J. Tritton, Physical Fluid Dynamics, Van Nostrand Reinhold, Canada, 1977 [Google Scholar]
  30. U. Gebhard, H. Hein, E. Just, P. Ruther, Combination of a fluidic microoscillator and micro-actuator in LIGA technique for medical application, International Conference on Solid State Sensors and Actuators 2 (1997) 761–764 [Google Scholar]
  31. M.K. Jeon, J.H. Kim, J. Noh, S.H. Kim, H.G. Park, S.I. Woo, Design and characterization of a passive recycle micromixer, J. Micromech. Microeng. 15 (2005) 346–351 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.