Open Access
Mechanics & Industry
Volume 17, Number 3, 2016
Article Number 306
Number of page(s) 9
Published online 18 February 2016
  1. M. Ciappa, Selected failure mechanisms of modern power modules, Microelectron. Reliab. 42 (2002) 653 [Google Scholar]
  2. B. Vandevelde, M. Gonzalez, P. Limaye, P. Ratchev, J. Vanfleteren, E. Beyne, Leadfree solder joint reliability estimation by finite element modelling: advantages, challenges and limitations, 7th international conference on Leadfree electronic components and assemblies, Frankfurt, Germany, October 21-22, 2004 [Google Scholar]
  3. R. Darveaux, Effect of simulation methodology on solder joint crack growth correlation and fatigue life prediction, J. Electron. Packag. 124 (2002) 147 [CrossRef] [Google Scholar]
  4. D. Dugdale, Yielding in steel sheets containing slits, Int. J. Solids Struct. 8 (1960) 100 [Google Scholar]
  5. G. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, Adv. Appl. Mech. 7 (1962) 55 [Google Scholar]
  6. M.J. van den Bosch, P.J.G. Schreurs, M.G.D. Geers, An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion, Eng. Fract. Mech. 73 (2006) 1220 [CrossRef] [Google Scholar]
  7. M. Alfano, F. Furgiuele, A. Leonardi, C. Maletta, G.H. Paulino, Cohesive zone modeling of mode I fracture in adhesive bonded joints, Key Eng. Mater. 348-349 (2007) 13 [CrossRef] [Google Scholar]
  8. O. Nguyen, E.A. Repetto, M. Ortiz, R.A. Radovitzky, A cohesive model of fatigue crack growth, Int. J. Fract. 110 (2001) 351 [CrossRef] [Google Scholar]
  9. K.L. Roe, T. Siegmund, An irreversible cohesive zone model for interface fatigue crack growth simulation, Eng. Fract. Mech. 70 (2003) 209 [CrossRef] [Google Scholar]
  10. Q.D. Yang, D.J. Shim, S.M. Spearing, A cohesive zone model for low cycle fatigue life prediction of solder joints, Microelectron. Eng. 75 (2004) 85 [CrossRef] [Google Scholar]
  11. A. Abdul-Baqi, P.J.G. Schreurs, G.M.D. Geers, Fatigue damage modeling in solder interconnects using a cohesive zone approach, Int. J. Solids Struct. 42 (2005) 927 [Google Scholar]
  12. S. Maiti, P.H. Geubelle, A cohesive model for fatigue failure of polymers, Eng. Fract. Mech. 72 (2005) 691 [CrossRef] [Google Scholar]
  13. H. Khoramishad, A.D. Crocombe, K.B. Katnam, I.A. Ashcroft, Predicting fatigue damage in adhesively bonded joints using a cohesive zone model, Int. J. Fatigue 32 (2010) 1146 [CrossRef] [Google Scholar]
  14. L. Benabou, Z. Sun, P.R. Dahoo, A thermo-mechanical cohesive zone model for solder joint lifetime prediction Int. J. Fatigue 49 (2013) 18 [CrossRef] [Google Scholar]
  15. J.H.L. Pang, B.S. Xiong, Mechanical properties for 95.5Sn-3.8Ag-0.7Cu lead-free solder alloy, IEEE Trans. Compon. Packag. Technol. 28 (2005) 830 [CrossRef] [Google Scholar]
  16. L. Anand, Constitutive equations for hot-working of metals, Int. J. Plast. 1 (1985) 213 [CrossRef] [Google Scholar]
  17. S.B. Brown, K.H. Kim, L. Anand, An internal variable constitutive model for hot working of metals, Int. J. Plast. 5 (1989) 95 [Google Scholar]
  18. D. Bhate, D. Chan, G. Subbarayan, T.C. Chiu, V. Gupta, D.R. Edwards, Components and packaging technologies, IEEE Trans. Compon. Packag. Technol. 31 (2008) 622 [CrossRef] [Google Scholar]
  19. G.Z. Wang, Z.N. Cheng, K. Becker, J. Wilde, Applying Anand model to represent the viscoplastic deformation behavior of solder alloys, J. Electron. Packag. 123 (2001) 247 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.