Open Access
Issue
Mechanics & Industry
Volume 17, Number 4, 2016
Article Number 401
Number of page(s) 12
DOI https://doi.org/10.1051/meca/2015074
Published online 29 February 2016
  1. E. Feulvarch, M. Fontaine, J.M. Bergheau, XFEM investigation of a crack path in residual stresses resulting from quenching, Finite Elements in Analysis and Design 75 (2013) 62–70 [CrossRef] [Google Scholar]
  2. L.E. Lindgren, H. Haggblad, J.M.A. McDill, Automatic Remeshing for Three-dimensional Finite Element Simulation of Welding, Comput. Methods Appl. Mech. Eng. 147 (1997) 401–409 [CrossRef] [Google Scholar]
  3. H. Runnemalm, S. Hyun, Three-dimensional Welding Analysis using an Adaptive Mesh Scheme, Comput. Methods Appl. Mech. Eng. 189 (2000) 515–523 [CrossRef] [Google Scholar]
  4. P. Duranton, J. Devaux, V. Robin, P. Gilles, J.M. Bergheau, 3D modelling of multipass welding of 316L stainless steel pipe, J. Mater. Process. Technol. 153-154 (2004) 457–463 [CrossRef] [Google Scholar]
  5. M. Nastroom, L. Wikander, L.E. Karlsson, J. Goldak, Combined 3D and Shell Element Modelling of Welding, IUTAM Symp. on the Mechanical Effects of Welding, Lulea, Sweden, 1991, pp. 10–14 [Google Scholar]
  6. S. Sarkani, V. Tritchkov, G. Michaelov, An efficient approach for computing residual stresses in welded joints, Finite Elements in Analysis and Design 35 (2000) 247–268 [CrossRef] [Google Scholar]
  7. J. Xu, X. Jia, Y. Fan, A. Liu, C. Zhang, Residual stress analyses in a pipe welding simulation: 3D pipe versus axi-symmectric models, Proc. Mater. Sci. 3 (2014) 511–516 [CrossRef] [Google Scholar]
  8. ESI Group, Users manual, 2014 [Google Scholar]
  9. E. Feulvarch, V. Robin, J.M. Bergheau, Thermometallurgical and mechanical modelling of welding application to multipass dissimilar metal girth welds, Sci. Technol. Weld. Joining 16 (2011) 221–231 [CrossRef] [Google Scholar]
  10. F.M.B. Fernandes, S. Denis, A. Simon, Mathematical model coupling phase transformation and temperature evolution during quenching of steels, Mater. Sci. Technol. 1 (1985) 838–844 [CrossRef] [Google Scholar]
  11. J.-B. Leblond, J.C. Devaux, A new kinetic model for anisothermal metallurgical transformations in steel including effect of austenite grain size, Acta Metallurgica 32,1 (1984) 137–146 [Google Scholar]
  12. T. Reti, Z. Freid, I. Felde, Computer simulation of steel quenching process using a multi-phase transformation model, Comput. Mater. Sci. 22 (2001) 261–278 [CrossRef] [Google Scholar]
  13. D.P. Koistinen, R.E. Marburger, A General Equation Prescribing the Extent of Austenite-Martensite Transformation in Pure Fe-C Alloys and Plain Carbon Steels, Acta Metallurgica 7 (1959) 417–426 [Google Scholar]
  14. S. Denis, E. Gauthier, S. Sjostrom, A. Simon, Influence of stresses on the kinetics of pearlitic transformation during continuous cooling, Acta Metallurgica 35 (1987) 1621–1632 [CrossRef] [Google Scholar]
  15. J.B. Leblond, G. Mottet, J.C. Devaux, A theoretical and numerical approach to the plastic behavior of steels during phase transformation, I: Derivation of general relations, II: Study of classical plasticity for ideal-plastic phases, J. Mech. Phys. Solids 34-4 (1986) 395–432 [CrossRef] [Google Scholar]
  16. G.W. Greenwood, R.H. Johnson, The deformation of metals under small stresses during phase transformation, Proc. Roy. Soc. A 283 (1965) 403–422 [Google Scholar]
  17. C.L. Magee, Transformation kinetics, microplasticity and aging of martensite in Fe-31 Ni, Ph.D. Thesis, Carnegie Institute of Technology, Pittsburgh, USA, 1966 [Google Scholar]
  18. F. Abrassart, Inflluence des transformations martensitiques sur les propriétés mécaniques des alliages du système Fe-Ni-Cr-C, Ph.D. Thesis, University of Nancy, Nancy, 1972 [Google Scholar]
  19. M. Berveiller, F.D. Fisher, Mechanics of solids with phase changes, CISM Course 368, Springer, 1997 [Google Scholar]
  20. J.B. Leblond, J. Devaux, J.C. Devaux, Mathematical modelling of transformation plasticity in steels, I: Case of ideal-plastic phases, II: Coupling with strain-hardening phenomena, Int. J. Plasticity 5 (1989) 551–591 [CrossRef] [Google Scholar]
  21. H.M. Aarbogh, M. Mhamdi, A. Mo, H.G. Fjaer, Simplified method for establishing constitutive equations and flow stress data for welding stress modelling, Sci. Technol. Weld. Joining 13 (2008) 705–713 [CrossRef] [Google Scholar]
  22. Y. Vincent, J.M. Bergheau, J.B. Leblond, Viscoplastic behaviour of steels during phase transformations, Comptes Rendus Mécanique 331 (2003) 587–594 [CrossRef] [Google Scholar]
  23. J. Devaux, J.B. Leblond, J.M. Bergheau, Numerical study of the plastic behaviour of a low alloy steel during phase transformations, Journal of Shanghai Jiaotong University E-5 (2000) 206–212 [Google Scholar]
  24. L. Karlsson, L.E. Lindgren, Modeling of Casting, Weld. Adv. Solid. Process. V (1991) 187–202 [Google Scholar]
  25. J. Goldak, A. Chakravarti, J. Bibby, A new finite element model for welding heat sources, Metall. Mater. Trans. B 15 (1984) 299–305 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.