Open Access
Mechanics & Industry
Volume 17, Number 4, 2016
Article Number 402
Number of page(s) 15
Published online 29 February 2016
  1. S.A. Tobias, Vibraciones en Maquinas-Herramientas, URMO, Spain, 1961 [Google Scholar]
  2. J. Tlusty, M. Polacek, The stability of machine tools against self-excited vibrations in machining, ASME Int. Res. Prod. 1 (1963) 465–474 [Google Scholar]
  3. Y. Altintas, Manufacturing Automation – Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design, Cambridge University Press, 2000 [Google Scholar]
  4. Y. Altintas, M. Weck, Chatter Stability of Metal Cutting and Grinding, CIRP Ann. Manufact. Technol. 53 (2004) 619–642 [Google Scholar]
  5. P. Palpandian, R. Prabhu, S. Satish Babu, Stability Lobe Diagram for High Speed Machining Process: Comparison of Experimental and Analytical Methods-Review, Int. J. Innivative Res. In Sinecen Eng. And Tech. 2 (2013) [Google Scholar]
  6. Y. Altintas, E. Budak, Analytical Prediction of Stability Lobes in Milling, CIRP Annals – Manufacturing Technology 44 (1995) 357–362 [Google Scholar]
  7. V. Gagnol, T.-P. Le, P. Ray, Modal identification of spindle-tool unit in high-speed machining, Mech. Syst. Signal Process. 25 (2011) 2388–2398 [CrossRef] [Google Scholar]
  8. I. Zaghbani, V. Songmene, Estimation of machine-tool dynamic parameters during machining operation through operational modal analysis, Int. J. Machine Tools Manuf. 49 (2009) 947–957 [Google Scholar]
  9. T.L. Schmitz, J.C. Ziegert, C. Stanislaus, A method for predicting chatter stability for systems with speed-dependent spindle dynamics, Society of Manufacturing engineers, Technical paper 32 (2003) 1437–1446 [Google Scholar]
  10. B. Badri, M. Thomas, S. Sassi, et al. Instability of high speed machining due to correlation between bearing defect and rotor resonance frequencies. Proceedings of the 27th Seminar on machinery vibration, Canadian Machinery Vibration, 2009 [Google Scholar]
  11. R.P.H. Faassen, N. van de Wouw, J.A.J. Oosterling, H. Nijmeijer, Prediction of regenerative chatter by modelling and analysis of high-speed milling, Int. J. Mach. Tool. Manuf. 43 (2003) 1437–1446 [CrossRef] [Google Scholar]
  12. M.A. Alfares, A. Elsharkawy, Effects of axial preloading of angular contact ball bearings on the dynamics of a grinding machine spindle system, J. Mater. Process. Technol. 136 (2003) 48–59 [CrossRef] [Google Scholar]
  13. Shin, Yung C., Dynamics of Machine Tool Spindle/Bearing Systems under Thermal Growth, J. Tribol. 4 (1997) 875–882 [Google Scholar]
  14. N. Aktürk, M. Uneeb, R. Gohar, The Effects of Number of Balls and Preload on Vibrations Associated With Ball Bearings, J. Tribol. 119 (1997) 747–753 [CrossRef] [Google Scholar]
  15. Jui-Pin Hung, Yuan-Lung Lai, Ching-Yuan Lin, Tzu-Liang Lo, Modeling the machining stability of a vertical milling machine under the influence of the preloaded linear guide, Int. J. Machine Tools Manuf. 51 (2011) 731–739 [CrossRef] [Google Scholar]
  16. V. Gagnol, B.C. Bouzgarrou, P. Ray, C. Barra, Model-based chatter stability prediction for high-speed spindles, I Int. J. Machine Tools Manuf. 47 (2007) 1176–1186 [Google Scholar]
  17. M. Lamraoui, M. Thomas, M. El Badaoui, Cyclostationarity approach for monitoring chatter and tool wear in high speed milling, Mech. Syst. Signal Process. 44 (2014) 177–198 [CrossRef] [Google Scholar]
  18. C. Bruenner, G. Spieß, Überwachte Schmierung, Hochgeschwindigkeitsspindeln mit integriertem Ö l-Luft-Schmiersystem, Antriebstechnik 9 (2005) 340 [Google Scholar]
  19. E. Abele, A. Schiffler, S. Rothenbucher, System Identification During Milling via Active Magnetic Bearing. Production Engineering 1 (2007) 219–226 [Google Scholar]
  20. M. Kalveram, Analyse und Vorhersage der Rotordynamik und Prozessstabilitat beim Hochgeschwindigkeitsfrasen, Ph.D. thesis, Universitat Dortmund, 2005 [Google Scholar]
  21. E. Abele, Y. Altintas, C. Brecher, Machine tool spindle units, CIRP Ann. Manufact. Technol. 59 (2010) 781–802 [Google Scholar]
  22. G.H. James, T.G. Carne, J.P. Lauffer, The natural excitation technique (next) for modal parameter extraction from operating structures, J. Anal. Exp. Modal Anal. 10 (1995) 260–277 [Google Scholar]
  23. D.L. Brown, R.J. Allemang, R. Zimmerman, M. Mergeay, Parameter estimation techniques for modal analysis, SAE Technical Paper Series (790221), 1979 [Google Scholar]
  24. H. Vold, G.T. Rocklin, The numerical implication of a multi-input modal estimation method for mini-computers, In Proceedings of the 1st International Modal Analysis Conference (IMAC I), Orlando, Fl, USA, 1985, Society for Engineering Mechanics [Google Scholar]
  25. S.R. Ibrahim, E.C. Mikulcik, A time domain modal vibration test technique, Shock Vib. Bull. 43 (1973) 21–37 [Google Scholar]
  26. S.A. Zaghlool, Single-station time-domain (sstd) vibration testing technique: Theory and application, J. Sound Vib. 72 (1980) 205–234 [CrossRef] [Google Scholar]
  27. J.N. Juang, R.S. Pappa, An eigensystem realization algorithm for modal parameters identification and model reduction, J. Guidance, Control and Dynamics 8 (1985) 620–627 [Google Scholar]
  28. W. Gersch, Estimation of the autoregressive parameters of a mixed autoregressive moving-average time series, IEEE Trans. Automatic Control AC-15 (1970) 583–588 [Google Scholar]
  29. D. Otte, Q. Yang, P. Sas, Analysis of multivariate operating response data by means of arv time series modelling techniques, In 19th International Seminar on Modal Analysis (ISMA 19), Leuven (B), Belgium, 1994. KU Leuven [Google Scholar]
  30. P. Van Overschee, B. de Moor, A unifying theorem for three subspace system identification algorithms, In American Control Conference, Baltimore, USA, June, 1994 [Google Scholar]
  31. E. Parloo, P. Guillaume, B. Cauberghe, Maximum likelihood identification of non-stationary operational data, J. Sound Vib. 268 (2003) 971–991 [Google Scholar]
  32. Prasenjit Mohanty, Operational Modal Analysis in the Presence of Harmonic Excitations, Technische Universiteit Delft, PhD thesis, India [Google Scholar]
  33. R.B. Randall, N. Sawalhi, A new method for separating discrete components from a signal, J. Sound Vib. 45 (2011) 6–9 [Google Scholar]
  34. Zhi-Fang Fu, Jimin He, Modal analysis, Butterworth-Heinemann, 2001, p. 304 [Google Scholar]
  35. J. Antoni, R.B. Randall, Unsupervised Noise Cancellation for Vibration Signals: Part II – A Novel Frequency-Domain Algorithm, Mech. Syst. Signal Process. 18 (2004) 103–117 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.